forked from eden-emu/eden
		
	
		
			
	
	
		
			503 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			503 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | // Copyright 2016 Citra Emulator Project
 | ||
|  | // Licensed under GPLv2 or any later version
 | ||
|  | // Refer to the license.txt file included.
 | ||
|  | 
 | ||
|  | #pragma once
 | ||
|  | 
 | ||
|  | #include <cstddef>
 | ||
|  | #include <type_traits>
 | ||
|  | 
 | ||
|  | #include "audio_core/audio_core.h"
 | ||
|  | 
 | ||
|  | #include "common/bit_field.h"
 | ||
|  | #include "common/common_funcs.h"
 | ||
|  | #include "common/common_types.h"
 | ||
|  | #include "common/swap.h"
 | ||
|  | 
 | ||
|  | namespace DSP { | ||
|  | namespace HLE { | ||
|  | 
 | ||
|  | // The application-accessible region of DSP memory consists of two parts.
 | ||
|  | // Both are marked as IO and have Read/Write permissions.
 | ||
|  | //
 | ||
|  | // First Region:  0x1FF50000 (Size: 0x8000)
 | ||
|  | // Second Region: 0x1FF70000 (Size: 0x8000)
 | ||
|  | //
 | ||
|  | // The DSP reads from each region alternately based on the frame counter for each region much like a
 | ||
|  | // double-buffer. The frame counter is located as the very last u16 of each region and is incremented
 | ||
|  | // each audio tick.
 | ||
|  | 
 | ||
|  | struct SharedMemory; | ||
|  | 
 | ||
|  | constexpr VAddr region0_base = 0x1FF50000; | ||
|  | extern SharedMemory g_region0; | ||
|  | 
 | ||
|  | constexpr VAddr region1_base = 0x1FF70000; | ||
|  | extern SharedMemory g_region1; | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * The DSP is native 16-bit. The DSP also appears to be big-endian. When reading 32-bit numbers from | ||
|  |  * its memory regions, the higher and lower 16-bit halves are swapped compared to the little-endian | ||
|  |  * layout of the ARM11. Hence from the ARM11's point of view the memory space appears to be | ||
|  |  * middle-endian. | ||
|  |  * | ||
|  |  * Unusually this does not appear to be an issue for floating point numbers. The DSP makes the more | ||
|  |  * sensible choice of keeping that little-endian. There are also some exceptions such as the | ||
|  |  * IntermediateMixSamples structure, which is little-endian. | ||
|  |  * | ||
|  |  * This struct implements the conversion to and from this middle-endianness. | ||
|  |  */ | ||
|  | struct u32_dsp { | ||
|  |     u32_dsp() = default; | ||
|  |     operator u32() const { | ||
|  |         return Convert(storage); | ||
|  |     } | ||
|  |     void operator=(u32 new_value) { | ||
|  |         storage = Convert(new_value); | ||
|  |     } | ||
|  | private: | ||
|  |     static constexpr u32 Convert(u32 value) { | ||
|  |         return (value << 16) | (value >> 16); | ||
|  |     } | ||
|  |     u32_le storage; | ||
|  | }; | ||
|  | #if (__GNUC__ >= 5) || defined(__clang__) || defined(_MSC_VER)
 | ||
|  | static_assert(std::is_trivially_copyable<u32_dsp>::value, "u32_dsp isn't trivially copyable"); | ||
|  | #endif
 | ||
|  | 
 | ||
|  | // There are 15 structures in each memory region. A table of them in the order they appear in memory
 | ||
|  | // is presented below
 | ||
|  | //
 | ||
|  | //       Pipe 2 #    First Region DSP Address   Purpose                               Control
 | ||
|  | //       5           0x8400                     DSP Status                            DSP
 | ||
|  | //       9           0x8410                     DSP Debug Info                        DSP
 | ||
|  | //       6           0x8540                     Final Mix Samples                     DSP
 | ||
|  | //       2           0x8680                     Source Status [24]                    DSP
 | ||
|  | //       8           0x8710                     Compressor Table                      Application
 | ||
|  | //       4           0x9430                     DSP Configuration                     Application
 | ||
|  | //       7           0x9492                     Intermediate Mix Samples              DSP + App
 | ||
|  | //       1           0x9E92                     Source Configuration [24]             Application
 | ||
|  | //       3           0xA792                     Source ADPCM Coefficients [24]        Application
 | ||
|  | //       10          0xA912                     Surround Sound Related
 | ||
|  | //       11          0xAA12                     Surround Sound Related
 | ||
|  | //       12          0xAAD2                     Surround Sound Related
 | ||
|  | //       13          0xAC52                     Surround Sound Related
 | ||
|  | //       14          0xAC5C                     Surround Sound Related
 | ||
|  | //       0           0xBFFF                     Frame Counter                         Application
 | ||
|  | //
 | ||
|  | // Note that the above addresses do vary slightly between audio firmwares observed; the addresses are
 | ||
|  | // not fixed in stone. The addresses above are only an examplar; they're what this implementation
 | ||
|  | // does and provides to applications.
 | ||
|  | //
 | ||
|  | // Application requests the DSP service to convert DSP addresses into ARM11 virtual addresses using the
 | ||
|  | // ConvertProcessAddressFromDspDram service call. Applications seem to derive the addresses for the
 | ||
|  | // second region via:
 | ||
|  | //     second_region_dsp_addr = first_region_dsp_addr | 0x10000
 | ||
|  | //
 | ||
|  | // Applications maintain most of its own audio state, the memory region is used mainly for
 | ||
|  | // communication and not storage of state.
 | ||
|  | //
 | ||
|  | // In the documentation below, filter and effect transfer functions are specified in the z domain.
 | ||
|  | // (If you are more familiar with the Laplace transform, z = exp(sT). The z domain is the digital
 | ||
|  | //  frequency domain, just like how the s domain is the analog frequency domain.)
 | ||
|  | 
 | ||
|  | #define INSERT_PADDING_DSPWORDS(num_words) INSERT_PADDING_BYTES(2 * (num_words))
 | ||
|  | 
 | ||
|  | // GCC versions < 5.0 do not implement std::is_trivially_copyable.
 | ||
|  | // Excluding MSVC because it has weird behaviour for std::is_trivially_copyable.
 | ||
|  | #if (__GNUC__ >= 5) || defined(__clang__)
 | ||
|  |     #define ASSERT_DSP_STRUCT(name, size) \
 | ||
|  |         static_assert(std::is_standard_layout<name>::value, "DSP structure " #name " doesn't use standard layout"); \ | ||
|  |         static_assert(std::is_trivially_copyable<name>::value, "DSP structure " #name " isn't trivially copyable"); \ | ||
|  |         static_assert(sizeof(name) == (size), "Unexpected struct size for DSP structure " #name) | ||
|  | #else
 | ||
|  |     #define ASSERT_DSP_STRUCT(name, size) \
 | ||
|  |         static_assert(std::is_standard_layout<name>::value, "DSP structure " #name " doesn't use standard layout"); \ | ||
|  |         static_assert(sizeof(name) == (size), "Unexpected struct size for DSP structure " #name) | ||
|  | #endif
 | ||
|  | 
 | ||
|  | struct SourceConfiguration { | ||
|  |     struct Configuration { | ||
|  |         /// These dirty flags are set by the application when it updates the fields in this struct.
 | ||
|  |         /// The DSP clears these each audio frame.
 | ||
|  |         union { | ||
|  |             u32_le dirty_raw; | ||
|  | 
 | ||
|  |             BitField<2, 1, u32_le> adpcm_coefficients_dirty; | ||
|  |             BitField<3, 1, u32_le> partial_embedded_buffer_dirty; ///< Tends to be set when a looped buffer is queued.
 | ||
|  | 
 | ||
|  |             BitField<16, 1, u32_le> enable_dirty; | ||
|  |             BitField<17, 1, u32_le> interpolation_dirty; | ||
|  |             BitField<18, 1, u32_le> rate_multiplier_dirty; | ||
|  |             BitField<19, 1, u32_le> buffer_queue_dirty; | ||
|  |             BitField<20, 1, u32_le> loop_related_dirty; | ||
|  |             BitField<21, 1, u32_le> play_position_dirty; ///< Tends to also be set when embedded buffer is updated.
 | ||
|  |             BitField<22, 1, u32_le> filters_enabled_dirty; | ||
|  |             BitField<23, 1, u32_le> simple_filter_dirty; | ||
|  |             BitField<24, 1, u32_le> biquad_filter_dirty; | ||
|  |             BitField<25, 1, u32_le> gain_0_dirty; | ||
|  |             BitField<26, 1, u32_le> gain_1_dirty; | ||
|  |             BitField<27, 1, u32_le> gain_2_dirty; | ||
|  |             BitField<28, 1, u32_le> sync_dirty; | ||
|  |             BitField<29, 1, u32_le> reset_flag; | ||
|  | 
 | ||
|  |             BitField<31, 1, u32_le> embedded_buffer_dirty; | ||
|  |         }; | ||
|  | 
 | ||
|  |         // Gain control
 | ||
|  | 
 | ||
|  |         /**
 | ||
|  |          * Gain is between 0.0-1.0. This determines how much will this source appear on | ||
|  |          * each of the 12 channels that feed into the intermediate mixers. | ||
|  |          * Each of the three intermediate mixers is fed two left and two right channels. | ||
|  |          */ | ||
|  |         float_le gain[3][4]; | ||
|  | 
 | ||
|  |         // Interpolation
 | ||
|  | 
 | ||
|  |         /// Multiplier for sample rate. Resampling occurs with the selected interpolation method.
 | ||
|  |         float_le rate_multiplier; | ||
|  | 
 | ||
|  |         enum class InterpolationMode : u8 { | ||
|  |             None = 0, | ||
|  |             Linear = 1, | ||
|  |             Polyphase = 2 | ||
|  |         }; | ||
|  | 
 | ||
|  |         InterpolationMode interpolation_mode; | ||
|  |         INSERT_PADDING_BYTES(1); ///< Interpolation related
 | ||
|  | 
 | ||
|  |         // Filters
 | ||
|  | 
 | ||
|  |         /**
 | ||
|  |          * This is the simplest normalized first-order digital recursive filter. | ||
|  |          * The transfer function of this filter is: | ||
|  |          *     H(z) = b0 / (1 + a1 z^-1) | ||
|  |          * Values are signed fixed point with 15 fractional bits. | ||
|  |          */ | ||
|  |         struct SimpleFilter { | ||
|  |             s16_le b0; | ||
|  |             s16_le a1; | ||
|  |         }; | ||
|  | 
 | ||
|  |         /**
 | ||
|  |          * This is a normalised biquad filter (second-order). | ||
|  |          * The transfer function of this filter is: | ||
|  |          *     H(z) = (b0 + b1 z^-1 + b2 z^-2) / (1 - a1 z^-1 - a2 z^-2) | ||
|  |          * Nintendo chose to negate the feedbackward coefficients. This differs from standard notation | ||
|  |          * as in: https://ccrma.stanford.edu/~jos/filters/Direct_Form_I.html
 | ||
|  |          * Values are signed fixed point with 14 fractional bits. | ||
|  |          */ | ||
|  |         struct BiquadFilter { | ||
|  |             s16_le b0; | ||
|  |             s16_le b1; | ||
|  |             s16_le b2; | ||
|  |             s16_le a1; | ||
|  |             s16_le a2; | ||
|  |         }; | ||
|  | 
 | ||
|  |         union { | ||
|  |             u16_le filters_enabled; | ||
|  |             BitField<0, 1, u16_le> simple_filter_enabled; | ||
|  |             BitField<1, 1, u16_le> biquad_filter_enabled; | ||
|  |         }; | ||
|  | 
 | ||
|  |         SimpleFilter simple_filter; | ||
|  |         BiquadFilter biquad_filter; | ||
|  | 
 | ||
|  |         // Buffer Queue
 | ||
|  | 
 | ||
|  |         /// A buffer of audio data from the application, along with metadata about it.
 | ||
|  |         struct Buffer { | ||
|  |             /// Physical memory address of the start of the buffer
 | ||
|  |             u32_dsp physical_address; | ||
|  | 
 | ||
|  |             /// This is length in terms of samples.
 | ||
|  |             /// Note that in different buffer formats a sample takes up different number of bytes.
 | ||
|  |             u32_dsp length; | ||
|  | 
 | ||
|  |             /// ADPCM Predictor (4 bits) and Scale (4 bits)
 | ||
|  |             union { | ||
|  |                 u16_le adpcm_ps; | ||
|  |                 BitField<0, 4, u16_le> adpcm_scale; | ||
|  |                 BitField<4, 4, u16_le> adpcm_predictor; | ||
|  |             }; | ||
|  | 
 | ||
|  |             /// ADPCM Historical Samples (y[n-1] and y[n-2])
 | ||
|  |             u16_le adpcm_yn[2]; | ||
|  | 
 | ||
|  |             /// This is non-zero when the ADPCM values above are to be updated.
 | ||
|  |             u8 adpcm_dirty; | ||
|  | 
 | ||
|  |             /// Is a looping buffer.
 | ||
|  |             u8 is_looping; | ||
|  | 
 | ||
|  |             /// This value is shown in SourceStatus::previous_buffer_id when this buffer has finished.
 | ||
|  |             /// This allows the emulated application to tell what buffer is currently playing
 | ||
|  |             u16_le buffer_id; | ||
|  | 
 | ||
|  |             INSERT_PADDING_DSPWORDS(1); | ||
|  |         }; | ||
|  | 
 | ||
|  |         u16_le buffers_dirty;             ///< Bitmap indicating which buffers are dirty (bit i -> buffers[i])
 | ||
|  |         Buffer buffers[4];                ///< Queued Buffers
 | ||
|  | 
 | ||
|  |         // Playback controls
 | ||
|  | 
 | ||
|  |         u32_dsp loop_related; | ||
|  |         u8 enable; | ||
|  |         INSERT_PADDING_BYTES(1); | ||
|  |         u16_le sync;                      ///< Application-side sync (See also: SourceStatus::sync)
 | ||
|  |         u32_dsp play_position;            ///< Position. (Units: number of samples)
 | ||
|  |         INSERT_PADDING_DSPWORDS(2); | ||
|  | 
 | ||
|  |         // Embedded Buffer
 | ||
|  |         // This buffer is often the first buffer to be used when initiating audio playback,
 | ||
|  |         // after which the buffer queue is used.
 | ||
|  | 
 | ||
|  |         u32_dsp physical_address; | ||
|  | 
 | ||
|  |         /// This is length in terms of samples.
 | ||
|  |         /// Note a sample takes up different number of bytes in different buffer formats.
 | ||
|  |         u32_dsp length; | ||
|  | 
 | ||
|  |         enum class MonoOrStereo : u16_le { | ||
|  |             Mono = 1, | ||
|  |             Stereo = 2 | ||
|  |         }; | ||
|  | 
 | ||
|  |         enum class Format : u16_le { | ||
|  |             PCM8 = 0, | ||
|  |             PCM16 = 1, | ||
|  |             ADPCM = 2 | ||
|  |         }; | ||
|  | 
 | ||
|  |         union { | ||
|  |             u16_le flags1_raw; | ||
|  |             BitField<0, 2, MonoOrStereo> mono_or_stereo; | ||
|  |             BitField<2, 2, Format> format; | ||
|  |             BitField<5, 1, u16_le> fade_in; | ||
|  |         }; | ||
|  | 
 | ||
|  |         /// ADPCM Predictor (4 bit) and Scale (4 bit)
 | ||
|  |         union { | ||
|  |             u16_le adpcm_ps; | ||
|  |             BitField<0, 4, u16_le> adpcm_scale; | ||
|  |             BitField<4, 4, u16_le> adpcm_predictor; | ||
|  |         }; | ||
|  | 
 | ||
|  |         /// ADPCM Historical Samples (y[n-1] and y[n-2])
 | ||
|  |         u16_le adpcm_yn[2]; | ||
|  | 
 | ||
|  |         union { | ||
|  |             u16_le flags2_raw; | ||
|  |             BitField<0, 1, u16_le> adpcm_dirty; ///< Has the ADPCM info above been changed?
 | ||
|  |             BitField<1, 1, u16_le> is_looping; ///< Is this a looping buffer?
 | ||
|  |         }; | ||
|  | 
 | ||
|  |         /// Buffer id of embedded buffer (used as a buffer id in SourceStatus to reference this buffer).
 | ||
|  |         u16_le buffer_id; | ||
|  |     }; | ||
|  | 
 | ||
|  |     Configuration config[AudioCore::num_sources]; | ||
|  | }; | ||
|  | ASSERT_DSP_STRUCT(SourceConfiguration::Configuration, 192); | ||
|  | ASSERT_DSP_STRUCT(SourceConfiguration::Configuration::Buffer, 20); | ||
|  | 
 | ||
|  | struct SourceStatus { | ||
|  |     struct Status { | ||
|  |         u8 is_enabled;               ///< Is this channel enabled? (Doesn't have to be playing anything.)
 | ||
|  |         u8 previous_buffer_id_dirty; ///< Non-zero when previous_buffer_id changes
 | ||
|  |         u16_le sync;                 ///< Is set by the DSP to the value of SourceConfiguration::sync
 | ||
|  |         u32_dsp buffer_position;     ///< Number of samples into the current buffer
 | ||
|  |         u16_le previous_buffer_id;   ///< Updated when a buffer finishes playing
 | ||
|  |         INSERT_PADDING_DSPWORDS(1); | ||
|  |     }; | ||
|  | 
 | ||
|  |     Status status[AudioCore::num_sources]; | ||
|  | }; | ||
|  | ASSERT_DSP_STRUCT(SourceStatus::Status, 12); | ||
|  | 
 | ||
|  | struct DspConfiguration { | ||
|  |     /// These dirty flags are set by the application when it updates the fields in this struct.
 | ||
|  |     /// The DSP clears these each audio frame.
 | ||
|  |     union { | ||
|  |         u32_le dirty_raw; | ||
|  | 
 | ||
|  |         BitField<8, 1, u32_le> mixer1_enabled_dirty; | ||
|  |         BitField<9, 1, u32_le> mixer2_enabled_dirty; | ||
|  |         BitField<10, 1, u32_le> delay_effect_0_dirty; | ||
|  |         BitField<11, 1, u32_le> delay_effect_1_dirty; | ||
|  |         BitField<12, 1, u32_le> reverb_effect_0_dirty; | ||
|  |         BitField<13, 1, u32_le> reverb_effect_1_dirty; | ||
|  | 
 | ||
|  |         BitField<16, 1, u32_le> volume_0_dirty; | ||
|  | 
 | ||
|  |         BitField<24, 1, u32_le> volume_1_dirty; | ||
|  |         BitField<25, 1, u32_le> volume_2_dirty; | ||
|  |         BitField<26, 1, u32_le> output_format_dirty; | ||
|  |         BitField<27, 1, u32_le> limiter_enabled_dirty; | ||
|  |         BitField<28, 1, u32_le> headphones_connected_dirty; | ||
|  |     }; | ||
|  | 
 | ||
|  |     /// The DSP has three intermediate audio mixers. This controls the volume level (0.0-1.0) for each at the final mixer
 | ||
|  |     float_le volume[3]; | ||
|  | 
 | ||
|  |     INSERT_PADDING_DSPWORDS(3); | ||
|  | 
 | ||
|  |     enum class OutputFormat : u16_le { | ||
|  |         Mono = 0, | ||
|  |         Stereo = 1, | ||
|  |         Surround = 2 | ||
|  |     }; | ||
|  | 
 | ||
|  |     OutputFormat output_format; | ||
|  | 
 | ||
|  |     u16_le limiter_enabled;      ///< Not sure of the exact gain equation for the limiter.
 | ||
|  |     u16_le headphones_connected; ///< Application updates the DSP on headphone status.
 | ||
|  |     INSERT_PADDING_DSPWORDS(4);  ///< TODO: Surround sound related
 | ||
|  |     INSERT_PADDING_DSPWORDS(2);  ///< TODO: Intermediate mixer 1/2 related
 | ||
|  |     u16_le mixer1_enabled; | ||
|  |     u16_le mixer2_enabled; | ||
|  | 
 | ||
|  |     /**
 | ||
|  |      * This is delay with feedback. | ||
|  |      * Transfer function: | ||
|  |      *     H(z) = a z^-N / (1 - b z^-1 + a g z^-N) | ||
|  |      *   where | ||
|  |      *     N = frame_count * samples_per_frame | ||
|  |      * g, a and b are fixed point with 7 fractional bits | ||
|  |      */ | ||
|  |     struct DelayEffect { | ||
|  |         /// These dirty flags are set by the application when it updates the fields in this struct.
 | ||
|  |         /// The DSP clears these each audio frame.
 | ||
|  |         union { | ||
|  |             u16_le dirty_raw; | ||
|  |             BitField<0, 1, u16_le> enable_dirty; | ||
|  |             BitField<1, 1, u16_le> work_buffer_address_dirty; | ||
|  |             BitField<2, 1, u16_le> other_dirty; ///< Set when anything else has been changed
 | ||
|  |         }; | ||
|  | 
 | ||
|  |         u16_le enable; | ||
|  |         INSERT_PADDING_DSPWORDS(1); | ||
|  |         u16_le outputs; | ||
|  |         u32_dsp work_buffer_address; ///< The application allocates a block of memory for the DSP to use as a work buffer.
 | ||
|  |         u16_le frame_count;  ///< Frames to delay by
 | ||
|  | 
 | ||
|  |         // Coefficients
 | ||
|  |         s16_le g; ///< Fixed point with 7 fractional bits
 | ||
|  |         s16_le a; ///< Fixed point with 7 fractional bits
 | ||
|  |         s16_le b; ///< Fixed point with 7 fractional bits
 | ||
|  |     }; | ||
|  | 
 | ||
|  |     DelayEffect delay_effect[2]; | ||
|  | 
 | ||
|  |     struct ReverbEffect { | ||
|  |         INSERT_PADDING_DSPWORDS(26); ///< TODO
 | ||
|  |     }; | ||
|  | 
 | ||
|  |     ReverbEffect reverb_effect[2]; | ||
|  | 
 | ||
|  |     INSERT_PADDING_DSPWORDS(4); | ||
|  | }; | ||
|  | ASSERT_DSP_STRUCT(DspConfiguration, 196); | ||
|  | ASSERT_DSP_STRUCT(DspConfiguration::DelayEffect, 20); | ||
|  | ASSERT_DSP_STRUCT(DspConfiguration::ReverbEffect, 52); | ||
|  | 
 | ||
|  | struct AdpcmCoefficients { | ||
|  |     /// Coefficients are signed fixed point with 11 fractional bits.
 | ||
|  |     /// Each source has 16 coefficients associated with it.
 | ||
|  |     s16_le coeff[AudioCore::num_sources][16]; | ||
|  | }; | ||
|  | ASSERT_DSP_STRUCT(AdpcmCoefficients, 768); | ||
|  | 
 | ||
|  | struct DspStatus { | ||
|  |     u16_le unknown; | ||
|  |     u16_le dropped_frames; | ||
|  |     INSERT_PADDING_DSPWORDS(0xE); | ||
|  | }; | ||
|  | ASSERT_DSP_STRUCT(DspStatus, 32); | ||
|  | 
 | ||
|  | /// Final mixed output in PCM16 stereo format, what you hear out of the speakers.
 | ||
|  | /// When the application writes to this region it has no effect.
 | ||
|  | struct FinalMixSamples { | ||
|  |     s16_le pcm16[2 * AudioCore::samples_per_frame]; | ||
|  | }; | ||
|  | ASSERT_DSP_STRUCT(FinalMixSamples, 640); | ||
|  | 
 | ||
|  | /// DSP writes output of intermediate mixers 1 and 2 here.
 | ||
|  | /// Writes to this region by the application edits the output of the intermediate mixers.
 | ||
|  | /// This seems to be intended to allow the application to do custom effects on the ARM11.
 | ||
|  | /// Values that exceed s16 range will be clipped by the DSP after further processing.
 | ||
|  | struct IntermediateMixSamples { | ||
|  |     struct Samples { | ||
|  |         s32_le pcm32[4][AudioCore::samples_per_frame]; ///< Little-endian as opposed to DSP middle-endian.
 | ||
|  |     }; | ||
|  | 
 | ||
|  |     Samples mix1; | ||
|  |     Samples mix2; | ||
|  | }; | ||
|  | ASSERT_DSP_STRUCT(IntermediateMixSamples, 5120); | ||
|  | 
 | ||
|  | /// Compressor table
 | ||
|  | struct Compressor { | ||
|  |     INSERT_PADDING_DSPWORDS(0xD20); ///< TODO
 | ||
|  | }; | ||
|  | 
 | ||
|  | /// There is no easy way to implement this in a HLE implementation.
 | ||
|  | struct DspDebug { | ||
|  |     INSERT_PADDING_DSPWORDS(0x130); | ||
|  | }; | ||
|  | ASSERT_DSP_STRUCT(DspDebug, 0x260); | ||
|  | 
 | ||
|  | struct SharedMemory { | ||
|  |     /// Padding
 | ||
|  |     INSERT_PADDING_DSPWORDS(0x400); | ||
|  | 
 | ||
|  |     DspStatus dsp_status; | ||
|  | 
 | ||
|  |     DspDebug dsp_debug; | ||
|  | 
 | ||
|  |     FinalMixSamples final_samples; | ||
|  | 
 | ||
|  |     SourceStatus source_statuses; | ||
|  | 
 | ||
|  |     Compressor compressor; | ||
|  | 
 | ||
|  |     DspConfiguration dsp_configuration; | ||
|  | 
 | ||
|  |     IntermediateMixSamples intermediate_mix_samples; | ||
|  | 
 | ||
|  |     SourceConfiguration source_configurations; | ||
|  | 
 | ||
|  |     AdpcmCoefficients adpcm_coefficients; | ||
|  | 
 | ||
|  |     /// Unknown 10-14 (Surround sound related)
 | ||
|  |     INSERT_PADDING_DSPWORDS(0x16ED); | ||
|  | 
 | ||
|  |     u16_le frame_counter; | ||
|  | }; | ||
|  | ASSERT_DSP_STRUCT(SharedMemory, 0x8000); | ||
|  | 
 | ||
|  | #undef INSERT_PADDING_DSPWORDS
 | ||
|  | #undef ASSERT_DSP_STRUCT
 | ||
|  | 
 | ||
|  | /// Initialize DSP hardware
 | ||
|  | void Init(); | ||
|  | 
 | ||
|  | /// Shutdown DSP hardware
 | ||
|  | void Shutdown(); | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * Perform processing and updates state of current shared memory buffer. | ||
|  |  * This function is called every audio tick before triggering the audio interrupt. | ||
|  |  * @return Whether an audio interrupt should be triggered this frame. | ||
|  |  */ | ||
|  | bool Tick(); | ||
|  | 
 | ||
|  | /// Returns a mutable reference to the current region. Current region is selected based on the frame counter.
 | ||
|  | SharedMemory& CurrentRegion(); | ||
|  | 
 | ||
|  | } // namespace HLE
 | ||
|  | } // namespace DSP
 |