forked from eden-emu/eden
		
	 84786dde00
			
		
	
	
		84786dde00
		
			
		
	
	
	
	
		
			
			Found by static analysis with PVS-Studio. Nobody seems to really know what was it doing there.
		
			
				
	
	
		
			834 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			834 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2020 yuzu Emulator Project
 | |
| // Licensed under GPLv2 or any later version
 | |
| // Refer to the license.txt file included.
 | |
| 
 | |
| // This file references various implementation details from Atmosphere, an open-source firmware for
 | |
| // the Nintendo Switch. Copyright 2018-2020 Atmosphere-NX.
 | |
| 
 | |
| #include <bit>
 | |
| 
 | |
| #include "common/assert.h"
 | |
| #include "common/bit_util.h"
 | |
| #include "common/fiber.h"
 | |
| #include "common/logging/log.h"
 | |
| #include "core/arm/arm_interface.h"
 | |
| #include "core/core.h"
 | |
| #include "core/core_timing.h"
 | |
| #include "core/cpu_manager.h"
 | |
| #include "core/hle/kernel/k_interrupt_manager.h"
 | |
| #include "core/hle/kernel/k_process.h"
 | |
| #include "core/hle/kernel/k_scheduler.h"
 | |
| #include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
 | |
| #include "core/hle/kernel/k_thread.h"
 | |
| #include "core/hle/kernel/kernel.h"
 | |
| #include "core/hle/kernel/physical_core.h"
 | |
| #include "core/hle/kernel/time_manager.h"
 | |
| 
 | |
| namespace Kernel {
 | |
| 
 | |
| static void IncrementScheduledCount(Kernel::KThread* thread) {
 | |
|     if (auto process = thread->GetOwnerProcess(); process) {
 | |
|         process->IncrementScheduledCount();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void KScheduler::RescheduleCores(KernelCore& kernel, u64 cores_pending_reschedule) {
 | |
|     auto scheduler = kernel.CurrentScheduler();
 | |
| 
 | |
|     u32 current_core{0xF};
 | |
|     bool must_context_switch{};
 | |
|     if (scheduler) {
 | |
|         current_core = scheduler->core_id;
 | |
|         // TODO(bunnei): Should be set to true when we deprecate single core
 | |
|         must_context_switch = !kernel.IsPhantomModeForSingleCore();
 | |
|     }
 | |
| 
 | |
|     while (cores_pending_reschedule != 0) {
 | |
|         const auto core = static_cast<u32>(std::countr_zero(cores_pending_reschedule));
 | |
|         ASSERT(core < Core::Hardware::NUM_CPU_CORES);
 | |
|         if (!must_context_switch || core != current_core) {
 | |
|             auto& phys_core = kernel.PhysicalCore(core);
 | |
|             phys_core.Interrupt();
 | |
|         }
 | |
|         cores_pending_reschedule &= ~(1ULL << core);
 | |
|     }
 | |
| 
 | |
|     for (std::size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; ++core_id) {
 | |
|         if (kernel.PhysicalCore(core_id).IsInterrupted()) {
 | |
|             KInterruptManager::HandleInterrupt(kernel, static_cast<s32>(core_id));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (must_context_switch) {
 | |
|         auto core_scheduler = kernel.CurrentScheduler();
 | |
|         kernel.ExitSVCProfile();
 | |
|         core_scheduler->RescheduleCurrentCore();
 | |
|         kernel.EnterSVCProfile();
 | |
|     }
 | |
| }
 | |
| 
 | |
| u64 KScheduler::UpdateHighestPriorityThread(KThread* highest_thread) {
 | |
|     KScopedSpinLock lk{guard};
 | |
|     if (KThread* prev_highest_thread = state.highest_priority_thread;
 | |
|         prev_highest_thread != highest_thread) {
 | |
|         if (prev_highest_thread != nullptr) {
 | |
|             IncrementScheduledCount(prev_highest_thread);
 | |
|             prev_highest_thread->SetLastScheduledTick(system.CoreTiming().GetCPUTicks());
 | |
|         }
 | |
|         if (state.should_count_idle) {
 | |
|             if (highest_thread != nullptr) {
 | |
|                 if (KProcess* process = highest_thread->GetOwnerProcess(); process != nullptr) {
 | |
|                     process->SetRunningThread(core_id, highest_thread, state.idle_count);
 | |
|                 }
 | |
|             } else {
 | |
|                 state.idle_count++;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         state.highest_priority_thread = highest_thread;
 | |
|         state.needs_scheduling.store(true);
 | |
|         return (1ULL << core_id);
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
 | |
|     ASSERT(kernel.GlobalSchedulerContext().IsLocked());
 | |
| 
 | |
|     // Clear that we need to update.
 | |
|     ClearSchedulerUpdateNeeded(kernel);
 | |
| 
 | |
|     u64 cores_needing_scheduling = 0, idle_cores = 0;
 | |
|     KThread* top_threads[Core::Hardware::NUM_CPU_CORES];
 | |
|     auto& priority_queue = GetPriorityQueue(kernel);
 | |
| 
 | |
|     /// We want to go over all cores, finding the highest priority thread and determining if
 | |
|     /// scheduling is needed for that core.
 | |
|     for (size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
 | |
|         KThread* top_thread = priority_queue.GetScheduledFront(static_cast<s32>(core_id));
 | |
|         if (top_thread != nullptr) {
 | |
|             // If the thread has no waiters, we need to check if the process has a thread pinned.
 | |
|             if (top_thread->GetNumKernelWaiters() == 0) {
 | |
|                 if (KProcess* parent = top_thread->GetOwnerProcess(); parent != nullptr) {
 | |
|                     if (KThread* pinned = parent->GetPinnedThread(static_cast<s32>(core_id));
 | |
|                         pinned != nullptr && pinned != top_thread) {
 | |
|                         // We prefer our parent's pinned thread if possible. However, we also don't
 | |
|                         // want to schedule un-runnable threads.
 | |
|                         if (pinned->GetRawState() == ThreadState::Runnable) {
 | |
|                             top_thread = pinned;
 | |
|                         } else {
 | |
|                             top_thread = nullptr;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             idle_cores |= (1ULL << core_id);
 | |
|         }
 | |
| 
 | |
|         top_threads[core_id] = top_thread;
 | |
|         cores_needing_scheduling |=
 | |
|             kernel.Scheduler(core_id).UpdateHighestPriorityThread(top_threads[core_id]);
 | |
|     }
 | |
| 
 | |
|     // Idle cores are bad. We're going to try to migrate threads to each idle core in turn.
 | |
|     while (idle_cores != 0) {
 | |
|         const auto core_id = static_cast<u32>(std::countr_zero(idle_cores));
 | |
|         if (KThread* suggested = priority_queue.GetSuggestedFront(core_id); suggested != nullptr) {
 | |
|             s32 migration_candidates[Core::Hardware::NUM_CPU_CORES];
 | |
|             size_t num_candidates = 0;
 | |
| 
 | |
|             // While we have a suggested thread, try to migrate it!
 | |
|             while (suggested != nullptr) {
 | |
|                 // Check if the suggested thread is the top thread on its core.
 | |
|                 const s32 suggested_core = suggested->GetActiveCore();
 | |
|                 if (KThread* top_thread =
 | |
|                         (suggested_core >= 0) ? top_threads[suggested_core] : nullptr;
 | |
|                     top_thread != suggested) {
 | |
|                     // Make sure we're not dealing with threads too high priority for migration.
 | |
|                     if (top_thread != nullptr &&
 | |
|                         top_thread->GetPriority() < HighestCoreMigrationAllowedPriority) {
 | |
|                         break;
 | |
|                     }
 | |
| 
 | |
|                     // The suggested thread isn't bound to its core, so we can migrate it!
 | |
|                     suggested->SetActiveCore(core_id);
 | |
|                     priority_queue.ChangeCore(suggested_core, suggested);
 | |
| 
 | |
|                     top_threads[core_id] = suggested;
 | |
|                     cores_needing_scheduling |=
 | |
|                         kernel.Scheduler(core_id).UpdateHighestPriorityThread(top_threads[core_id]);
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 // Note this core as a candidate for migration.
 | |
|                 ASSERT(num_candidates < Core::Hardware::NUM_CPU_CORES);
 | |
|                 migration_candidates[num_candidates++] = suggested_core;
 | |
|                 suggested = priority_queue.GetSuggestedNext(core_id, suggested);
 | |
|             }
 | |
| 
 | |
|             // If suggested is nullptr, we failed to migrate a specific thread. So let's try all our
 | |
|             // candidate cores' top threads.
 | |
|             if (suggested == nullptr) {
 | |
|                 for (size_t i = 0; i < num_candidates; i++) {
 | |
|                     // Check if there's some other thread that can run on the candidate core.
 | |
|                     const s32 candidate_core = migration_candidates[i];
 | |
|                     suggested = top_threads[candidate_core];
 | |
|                     if (KThread* next_on_candidate_core =
 | |
|                             priority_queue.GetScheduledNext(candidate_core, suggested);
 | |
|                         next_on_candidate_core != nullptr) {
 | |
|                         // The candidate core can run some other thread! We'll migrate its current
 | |
|                         // top thread to us.
 | |
|                         top_threads[candidate_core] = next_on_candidate_core;
 | |
|                         cores_needing_scheduling |=
 | |
|                             kernel.Scheduler(candidate_core)
 | |
|                                 .UpdateHighestPriorityThread(top_threads[candidate_core]);
 | |
| 
 | |
|                         // Perform the migration.
 | |
|                         suggested->SetActiveCore(core_id);
 | |
|                         priority_queue.ChangeCore(candidate_core, suggested);
 | |
| 
 | |
|                         top_threads[core_id] = suggested;
 | |
|                         cores_needing_scheduling |=
 | |
|                             kernel.Scheduler(core_id).UpdateHighestPriorityThread(
 | |
|                                 top_threads[core_id]);
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         idle_cores &= ~(1ULL << core_id);
 | |
|     }
 | |
| 
 | |
|     return cores_needing_scheduling;
 | |
| }
 | |
| 
 | |
| void KScheduler::ClearPreviousThread(KernelCore& kernel, KThread* thread) {
 | |
|     ASSERT(kernel.GlobalSchedulerContext().IsLocked());
 | |
|     for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; ++i) {
 | |
|         // Get an atomic reference to the core scheduler's previous thread.
 | |
|         std::atomic_ref<KThread*> prev_thread(kernel.Scheduler(static_cast<s32>(i)).prev_thread);
 | |
|         static_assert(std::atomic_ref<KThread*>::is_always_lock_free);
 | |
| 
 | |
|         // Atomically clear the previous thread if it's our target.
 | |
|         KThread* compare = thread;
 | |
|         prev_thread.compare_exchange_strong(compare, nullptr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void KScheduler::OnThreadStateChanged(KernelCore& kernel, KThread* thread, ThreadState old_state) {
 | |
|     ASSERT(kernel.GlobalSchedulerContext().IsLocked());
 | |
| 
 | |
|     // Check if the state has changed, because if it hasn't there's nothing to do.
 | |
|     const auto cur_state = thread->GetRawState();
 | |
|     if (cur_state == old_state) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Update the priority queues.
 | |
|     if (old_state == ThreadState::Runnable) {
 | |
|         // If we were previously runnable, then we're not runnable now, and we should remove.
 | |
|         GetPriorityQueue(kernel).Remove(thread);
 | |
|         IncrementScheduledCount(thread);
 | |
|         SetSchedulerUpdateNeeded(kernel);
 | |
|     } else if (cur_state == ThreadState::Runnable) {
 | |
|         // If we're now runnable, then we weren't previously, and we should add.
 | |
|         GetPriorityQueue(kernel).PushBack(thread);
 | |
|         IncrementScheduledCount(thread);
 | |
|         SetSchedulerUpdateNeeded(kernel);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s32 old_priority) {
 | |
|     ASSERT(kernel.GlobalSchedulerContext().IsLocked());
 | |
| 
 | |
|     // If the thread is runnable, we want to change its priority in the queue.
 | |
|     if (thread->GetRawState() == ThreadState::Runnable) {
 | |
|         GetPriorityQueue(kernel).ChangePriority(old_priority,
 | |
|                                                 thread == kernel.GetCurrentEmuThread(), thread);
 | |
|         IncrementScheduledCount(thread);
 | |
|         SetSchedulerUpdateNeeded(kernel);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void KScheduler::OnThreadAffinityMaskChanged(KernelCore& kernel, KThread* thread,
 | |
|                                              const KAffinityMask& old_affinity, s32 old_core) {
 | |
|     ASSERT(kernel.GlobalSchedulerContext().IsLocked());
 | |
| 
 | |
|     // If the thread is runnable, we want to change its affinity in the queue.
 | |
|     if (thread->GetRawState() == ThreadState::Runnable) {
 | |
|         GetPriorityQueue(kernel).ChangeAffinityMask(old_core, old_affinity, thread);
 | |
|         IncrementScheduledCount(thread);
 | |
|         SetSchedulerUpdateNeeded(kernel);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
 | |
|     ASSERT(system.GlobalSchedulerContext().IsLocked());
 | |
| 
 | |
|     // Get a reference to the priority queue.
 | |
|     auto& kernel = system.Kernel();
 | |
|     auto& priority_queue = GetPriorityQueue(kernel);
 | |
| 
 | |
|     // Rotate the front of the queue to the end.
 | |
|     KThread* top_thread = priority_queue.GetScheduledFront(cpu_core_id, priority);
 | |
|     KThread* next_thread = nullptr;
 | |
|     if (top_thread != nullptr) {
 | |
|         next_thread = priority_queue.MoveToScheduledBack(top_thread);
 | |
|         if (next_thread != top_thread) {
 | |
|             IncrementScheduledCount(top_thread);
 | |
|             IncrementScheduledCount(next_thread);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // While we have a suggested thread, try to migrate it!
 | |
|     {
 | |
|         KThread* suggested = priority_queue.GetSuggestedFront(cpu_core_id, priority);
 | |
|         while (suggested != nullptr) {
 | |
|             // Check if the suggested thread is the top thread on its core.
 | |
|             const s32 suggested_core = suggested->GetActiveCore();
 | |
|             if (KThread* top_on_suggested_core =
 | |
|                     (suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
 | |
|                                           : nullptr;
 | |
|                 top_on_suggested_core != suggested) {
 | |
|                 // If the next thread is a new thread that has been waiting longer than our
 | |
|                 // suggestion, we prefer it to our suggestion.
 | |
|                 if (top_thread != next_thread && next_thread != nullptr &&
 | |
|                     next_thread->GetLastScheduledTick() < suggested->GetLastScheduledTick()) {
 | |
|                     suggested = nullptr;
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 // If we're allowed to do a migration, do one.
 | |
|                 // NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the suggestion
 | |
|                 // to the front of the queue.
 | |
|                 if (top_on_suggested_core == nullptr ||
 | |
|                     top_on_suggested_core->GetPriority() >= HighestCoreMigrationAllowedPriority) {
 | |
|                     suggested->SetActiveCore(cpu_core_id);
 | |
|                     priority_queue.ChangeCore(suggested_core, suggested, true);
 | |
|                     IncrementScheduledCount(suggested);
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Get the next suggestion.
 | |
|             suggested = priority_queue.GetSamePriorityNext(cpu_core_id, suggested);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Now that we might have migrated a thread with the same priority, check if we can do better.
 | |
| 
 | |
|     {
 | |
|         KThread* best_thread = priority_queue.GetScheduledFront(cpu_core_id);
 | |
|         if (best_thread == GetCurrentThread()) {
 | |
|             best_thread = priority_queue.GetScheduledNext(cpu_core_id, best_thread);
 | |
|         }
 | |
| 
 | |
|         // If the best thread we can choose has a priority the same or worse than ours, try to
 | |
|         // migrate a higher priority thread.
 | |
|         if (best_thread != nullptr && best_thread->GetPriority() >= priority) {
 | |
|             KThread* suggested = priority_queue.GetSuggestedFront(cpu_core_id);
 | |
|             while (suggested != nullptr) {
 | |
|                 // If the suggestion's priority is the same as ours, don't bother.
 | |
|                 if (suggested->GetPriority() >= best_thread->GetPriority()) {
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 // Check if the suggested thread is the top thread on its core.
 | |
|                 const s32 suggested_core = suggested->GetActiveCore();
 | |
|                 if (KThread* top_on_suggested_core =
 | |
|                         (suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
 | |
|                                               : nullptr;
 | |
|                     top_on_suggested_core != suggested) {
 | |
|                     // If we're allowed to do a migration, do one.
 | |
|                     // NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the
 | |
|                     // suggestion to the front of the queue.
 | |
|                     if (top_on_suggested_core == nullptr ||
 | |
|                         top_on_suggested_core->GetPriority() >=
 | |
|                             HighestCoreMigrationAllowedPriority) {
 | |
|                         suggested->SetActiveCore(cpu_core_id);
 | |
|                         priority_queue.ChangeCore(suggested_core, suggested, true);
 | |
|                         IncrementScheduledCount(suggested);
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // Get the next suggestion.
 | |
|                 suggested = priority_queue.GetSuggestedNext(cpu_core_id, suggested);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // After a rotation, we need a scheduler update.
 | |
|     SetSchedulerUpdateNeeded(kernel);
 | |
| }
 | |
| 
 | |
| bool KScheduler::CanSchedule(KernelCore& kernel) {
 | |
|     return kernel.GetCurrentEmuThread()->GetDisableDispatchCount() <= 1;
 | |
| }
 | |
| 
 | |
| bool KScheduler::IsSchedulerUpdateNeeded(const KernelCore& kernel) {
 | |
|     return kernel.GlobalSchedulerContext().scheduler_update_needed.load(std::memory_order_acquire);
 | |
| }
 | |
| 
 | |
| void KScheduler::SetSchedulerUpdateNeeded(KernelCore& kernel) {
 | |
|     kernel.GlobalSchedulerContext().scheduler_update_needed.store(true, std::memory_order_release);
 | |
| }
 | |
| 
 | |
| void KScheduler::ClearSchedulerUpdateNeeded(KernelCore& kernel) {
 | |
|     kernel.GlobalSchedulerContext().scheduler_update_needed.store(false, std::memory_order_release);
 | |
| }
 | |
| 
 | |
| void KScheduler::DisableScheduling(KernelCore& kernel) {
 | |
|     // If we are shutting down the kernel, none of this is relevant anymore.
 | |
|     if (kernel.IsShuttingDown()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ASSERT(GetCurrentThreadPointer(kernel)->GetDisableDispatchCount() >= 0);
 | |
|     GetCurrentThreadPointer(kernel)->DisableDispatch();
 | |
| }
 | |
| 
 | |
| void KScheduler::EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling) {
 | |
|     // If we are shutting down the kernel, none of this is relevant anymore.
 | |
|     if (kernel.IsShuttingDown()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     auto* current_thread = GetCurrentThreadPointer(kernel);
 | |
| 
 | |
|     ASSERT(current_thread->GetDisableDispatchCount() >= 1);
 | |
| 
 | |
|     if (current_thread->GetDisableDispatchCount() > 1) {
 | |
|         current_thread->EnableDispatch();
 | |
|     } else {
 | |
|         RescheduleCores(kernel, cores_needing_scheduling);
 | |
|     }
 | |
| }
 | |
| 
 | |
| u64 KScheduler::UpdateHighestPriorityThreads(KernelCore& kernel) {
 | |
|     if (IsSchedulerUpdateNeeded(kernel)) {
 | |
|         return UpdateHighestPriorityThreadsImpl(kernel);
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| KSchedulerPriorityQueue& KScheduler::GetPriorityQueue(KernelCore& kernel) {
 | |
|     return kernel.GlobalSchedulerContext().priority_queue;
 | |
| }
 | |
| 
 | |
| void KScheduler::YieldWithoutCoreMigration(KernelCore& kernel) {
 | |
|     // Validate preconditions.
 | |
|     ASSERT(CanSchedule(kernel));
 | |
|     ASSERT(kernel.CurrentProcess() != nullptr);
 | |
| 
 | |
|     // Get the current thread and process.
 | |
|     KThread& cur_thread = Kernel::GetCurrentThread(kernel);
 | |
|     KProcess& cur_process = *kernel.CurrentProcess();
 | |
| 
 | |
|     // If the thread's yield count matches, there's nothing for us to do.
 | |
|     if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Get a reference to the priority queue.
 | |
|     auto& priority_queue = GetPriorityQueue(kernel);
 | |
| 
 | |
|     // Perform the yield.
 | |
|     {
 | |
|         KScopedSchedulerLock lock(kernel);
 | |
| 
 | |
|         const auto cur_state = cur_thread.GetRawState();
 | |
|         if (cur_state == ThreadState::Runnable) {
 | |
|             // Put the current thread at the back of the queue.
 | |
|             KThread* next_thread = priority_queue.MoveToScheduledBack(std::addressof(cur_thread));
 | |
|             IncrementScheduledCount(std::addressof(cur_thread));
 | |
| 
 | |
|             // If the next thread is different, we have an update to perform.
 | |
|             if (next_thread != std::addressof(cur_thread)) {
 | |
|                 SetSchedulerUpdateNeeded(kernel);
 | |
|             } else {
 | |
|                 // Otherwise, set the thread's yield count so that we won't waste work until the
 | |
|                 // process is scheduled again.
 | |
|                 cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void KScheduler::YieldWithCoreMigration(KernelCore& kernel) {
 | |
|     // Validate preconditions.
 | |
|     ASSERT(CanSchedule(kernel));
 | |
|     ASSERT(kernel.CurrentProcess() != nullptr);
 | |
| 
 | |
|     // Get the current thread and process.
 | |
|     KThread& cur_thread = Kernel::GetCurrentThread(kernel);
 | |
|     KProcess& cur_process = *kernel.CurrentProcess();
 | |
| 
 | |
|     // If the thread's yield count matches, there's nothing for us to do.
 | |
|     if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Get a reference to the priority queue.
 | |
|     auto& priority_queue = GetPriorityQueue(kernel);
 | |
| 
 | |
|     // Perform the yield.
 | |
|     {
 | |
|         KScopedSchedulerLock lock(kernel);
 | |
| 
 | |
|         const auto cur_state = cur_thread.GetRawState();
 | |
|         if (cur_state == ThreadState::Runnable) {
 | |
|             // Get the current active core.
 | |
|             const s32 core_id = cur_thread.GetActiveCore();
 | |
| 
 | |
|             // Put the current thread at the back of the queue.
 | |
|             KThread* next_thread = priority_queue.MoveToScheduledBack(std::addressof(cur_thread));
 | |
|             IncrementScheduledCount(std::addressof(cur_thread));
 | |
| 
 | |
|             // While we have a suggested thread, try to migrate it!
 | |
|             bool recheck = false;
 | |
|             KThread* suggested = priority_queue.GetSuggestedFront(core_id);
 | |
|             while (suggested != nullptr) {
 | |
|                 // Check if the suggested thread is the thread running on its core.
 | |
|                 const s32 suggested_core = suggested->GetActiveCore();
 | |
| 
 | |
|                 if (KThread* running_on_suggested_core =
 | |
|                         (suggested_core >= 0)
 | |
|                             ? kernel.Scheduler(suggested_core).state.highest_priority_thread
 | |
|                             : nullptr;
 | |
|                     running_on_suggested_core != suggested) {
 | |
|                     // If the current thread's priority is higher than our suggestion's we prefer
 | |
|                     // the next thread to the suggestion. We also prefer the next thread when the
 | |
|                     // current thread's priority is equal to the suggestions, but the next thread
 | |
|                     // has been waiting longer.
 | |
|                     if ((suggested->GetPriority() > cur_thread.GetPriority()) ||
 | |
|                         (suggested->GetPriority() == cur_thread.GetPriority() &&
 | |
|                          next_thread != std::addressof(cur_thread) &&
 | |
|                          next_thread->GetLastScheduledTick() < suggested->GetLastScheduledTick())) {
 | |
|                         suggested = nullptr;
 | |
|                         break;
 | |
|                     }
 | |
| 
 | |
|                     // If we're allowed to do a migration, do one.
 | |
|                     // NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the
 | |
|                     // suggestion to the front of the queue.
 | |
|                     if (running_on_suggested_core == nullptr ||
 | |
|                         running_on_suggested_core->GetPriority() >=
 | |
|                             HighestCoreMigrationAllowedPriority) {
 | |
|                         suggested->SetActiveCore(core_id);
 | |
|                         priority_queue.ChangeCore(suggested_core, suggested, true);
 | |
|                         IncrementScheduledCount(suggested);
 | |
|                         break;
 | |
|                     } else {
 | |
|                         // We couldn't perform a migration, but we should check again on a future
 | |
|                         // yield.
 | |
|                         recheck = true;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // Get the next suggestion.
 | |
|                 suggested = priority_queue.GetSuggestedNext(core_id, suggested);
 | |
|             }
 | |
| 
 | |
|             // If we still have a suggestion or the next thread is different, we have an update to
 | |
|             // perform.
 | |
|             if (suggested != nullptr || next_thread != std::addressof(cur_thread)) {
 | |
|                 SetSchedulerUpdateNeeded(kernel);
 | |
|             } else if (!recheck) {
 | |
|                 // Otherwise if we don't need to re-check, set the thread's yield count so that we
 | |
|                 // won't waste work until the process is scheduled again.
 | |
|                 cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void KScheduler::YieldToAnyThread(KernelCore& kernel) {
 | |
|     // Validate preconditions.
 | |
|     ASSERT(CanSchedule(kernel));
 | |
|     ASSERT(kernel.CurrentProcess() != nullptr);
 | |
| 
 | |
|     // Get the current thread and process.
 | |
|     KThread& cur_thread = Kernel::GetCurrentThread(kernel);
 | |
|     KProcess& cur_process = *kernel.CurrentProcess();
 | |
| 
 | |
|     // If the thread's yield count matches, there's nothing for us to do.
 | |
|     if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Get a reference to the priority queue.
 | |
|     auto& priority_queue = GetPriorityQueue(kernel);
 | |
| 
 | |
|     // Perform the yield.
 | |
|     {
 | |
|         KScopedSchedulerLock lock(kernel);
 | |
| 
 | |
|         const auto cur_state = cur_thread.GetRawState();
 | |
|         if (cur_state == ThreadState::Runnable) {
 | |
|             // Get the current active core.
 | |
|             const s32 core_id = cur_thread.GetActiveCore();
 | |
| 
 | |
|             // Migrate the current thread to core -1.
 | |
|             cur_thread.SetActiveCore(-1);
 | |
|             priority_queue.ChangeCore(core_id, std::addressof(cur_thread));
 | |
|             IncrementScheduledCount(std::addressof(cur_thread));
 | |
| 
 | |
|             // If there's nothing scheduled, we can try to perform a migration.
 | |
|             if (priority_queue.GetScheduledFront(core_id) == nullptr) {
 | |
|                 // While we have a suggested thread, try to migrate it!
 | |
|                 KThread* suggested = priority_queue.GetSuggestedFront(core_id);
 | |
|                 while (suggested != nullptr) {
 | |
|                     // Check if the suggested thread is the top thread on its core.
 | |
|                     const s32 suggested_core = suggested->GetActiveCore();
 | |
|                     if (KThread* top_on_suggested_core =
 | |
|                             (suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
 | |
|                                                   : nullptr;
 | |
|                         top_on_suggested_core != suggested) {
 | |
|                         // If we're allowed to do a migration, do one.
 | |
|                         if (top_on_suggested_core == nullptr ||
 | |
|                             top_on_suggested_core->GetPriority() >=
 | |
|                                 HighestCoreMigrationAllowedPriority) {
 | |
|                             suggested->SetActiveCore(core_id);
 | |
|                             priority_queue.ChangeCore(suggested_core, suggested);
 | |
|                             IncrementScheduledCount(suggested);
 | |
|                         }
 | |
| 
 | |
|                         // Regardless of whether we migrated, we had a candidate, so we're done.
 | |
|                         break;
 | |
|                     }
 | |
| 
 | |
|                     // Get the next suggestion.
 | |
|                     suggested = priority_queue.GetSuggestedNext(core_id, suggested);
 | |
|                 }
 | |
| 
 | |
|                 // If the suggestion is different from the current thread, we need to perform an
 | |
|                 // update.
 | |
|                 if (suggested != std::addressof(cur_thread)) {
 | |
|                     SetSchedulerUpdateNeeded(kernel);
 | |
|                 } else {
 | |
|                     // Otherwise, set the thread's yield count so that we won't waste work until the
 | |
|                     // process is scheduled again.
 | |
|                     cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
 | |
|                 }
 | |
|             } else {
 | |
|                 // Otherwise, we have an update to perform.
 | |
|                 SetSchedulerUpdateNeeded(kernel);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| KScheduler::KScheduler(Core::System& system_, s32 core_id_) : system{system_}, core_id{core_id_} {
 | |
|     switch_fiber = std::make_shared<Common::Fiber>(OnSwitch, this);
 | |
|     state.needs_scheduling.store(true);
 | |
|     state.interrupt_task_thread_runnable = false;
 | |
|     state.should_count_idle = false;
 | |
|     state.idle_count = 0;
 | |
|     state.idle_thread_stack = nullptr;
 | |
|     state.highest_priority_thread = nullptr;
 | |
| }
 | |
| 
 | |
| void KScheduler::Finalize() {
 | |
|     if (idle_thread) {
 | |
|         idle_thread->Close();
 | |
|         idle_thread = nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| KScheduler::~KScheduler() {
 | |
|     ASSERT(!idle_thread);
 | |
| }
 | |
| 
 | |
| KThread* KScheduler::GetCurrentThread() const {
 | |
|     if (auto result = current_thread.load(); result) {
 | |
|         return result;
 | |
|     }
 | |
|     return idle_thread;
 | |
| }
 | |
| 
 | |
| u64 KScheduler::GetLastContextSwitchTicks() const {
 | |
|     return last_context_switch_time;
 | |
| }
 | |
| 
 | |
| void KScheduler::RescheduleCurrentCore() {
 | |
|     ASSERT(GetCurrentThread()->GetDisableDispatchCount() == 1);
 | |
| 
 | |
|     auto& phys_core = system.Kernel().PhysicalCore(core_id);
 | |
|     if (phys_core.IsInterrupted()) {
 | |
|         phys_core.ClearInterrupt();
 | |
|     }
 | |
| 
 | |
|     guard.Lock();
 | |
|     if (state.needs_scheduling.load()) {
 | |
|         Schedule();
 | |
|     } else {
 | |
|         GetCurrentThread()->EnableDispatch();
 | |
|         guard.Unlock();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void KScheduler::OnThreadStart() {
 | |
|     SwitchContextStep2();
 | |
| }
 | |
| 
 | |
| void KScheduler::Unload(KThread* thread) {
 | |
|     ASSERT(thread);
 | |
| 
 | |
|     LOG_TRACE(Kernel, "core {}, unload thread {}", core_id, thread ? thread->GetName() : "nullptr");
 | |
| 
 | |
|     if (thread->IsCallingSvc()) {
 | |
|         thread->ClearIsCallingSvc();
 | |
|     }
 | |
| 
 | |
|     auto& physical_core = system.Kernel().PhysicalCore(core_id);
 | |
|     if (!physical_core.IsInitialized()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     Core::ARM_Interface& cpu_core = physical_core.ArmInterface();
 | |
|     cpu_core.SaveContext(thread->GetContext32());
 | |
|     cpu_core.SaveContext(thread->GetContext64());
 | |
|     // Save the TPIDR_EL0 system register in case it was modified.
 | |
|     thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());
 | |
|     cpu_core.ClearExclusiveState();
 | |
| 
 | |
|     if (!thread->IsTerminationRequested() && thread->GetActiveCore() == core_id) {
 | |
|         prev_thread = thread;
 | |
|     } else {
 | |
|         prev_thread = nullptr;
 | |
|     }
 | |
| 
 | |
|     thread->context_guard.Unlock();
 | |
| }
 | |
| 
 | |
| void KScheduler::Reload(KThread* thread) {
 | |
|     LOG_TRACE(Kernel, "core {}, reload thread {}", core_id, thread ? thread->GetName() : "nullptr");
 | |
| 
 | |
|     if (thread) {
 | |
|         ASSERT_MSG(thread->GetState() == ThreadState::Runnable, "Thread must be runnable.");
 | |
| 
 | |
|         Core::ARM_Interface& cpu_core = system.ArmInterface(core_id);
 | |
|         cpu_core.LoadContext(thread->GetContext32());
 | |
|         cpu_core.LoadContext(thread->GetContext64());
 | |
|         cpu_core.SetTlsAddress(thread->GetTLSAddress());
 | |
|         cpu_core.SetTPIDR_EL0(thread->GetTPIDR_EL0());
 | |
|         cpu_core.ClearExclusiveState();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void KScheduler::SwitchContextStep2() {
 | |
|     // Load context of new thread
 | |
|     Reload(current_thread.load());
 | |
| 
 | |
|     RescheduleCurrentCore();
 | |
| }
 | |
| 
 | |
| void KScheduler::ScheduleImpl() {
 | |
|     KThread* previous_thread = GetCurrentThread();
 | |
|     KThread* next_thread = state.highest_priority_thread;
 | |
| 
 | |
|     state.needs_scheduling = false;
 | |
| 
 | |
|     // We never want to schedule a null thread, so use the idle thread if we don't have a next.
 | |
|     if (next_thread == nullptr) {
 | |
|         next_thread = idle_thread;
 | |
|     }
 | |
| 
 | |
|     // If we're not actually switching thread, there's nothing to do.
 | |
|     if (next_thread == current_thread.load()) {
 | |
|         previous_thread->EnableDispatch();
 | |
|         guard.Unlock();
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (next_thread->GetCurrentCore() != core_id) {
 | |
|         next_thread->SetCurrentCore(core_id);
 | |
|     }
 | |
| 
 | |
|     current_thread.store(next_thread);
 | |
| 
 | |
|     KProcess* const previous_process = system.Kernel().CurrentProcess();
 | |
| 
 | |
|     UpdateLastContextSwitchTime(previous_thread, previous_process);
 | |
| 
 | |
|     // Save context for previous thread
 | |
|     Unload(previous_thread);
 | |
| 
 | |
|     std::shared_ptr<Common::Fiber>* old_context;
 | |
|     old_context = &previous_thread->GetHostContext();
 | |
|     guard.Unlock();
 | |
| 
 | |
|     Common::Fiber::YieldTo(*old_context, *switch_fiber);
 | |
|     /// When a thread wakes up, the scheduler may have changed to other in another core.
 | |
|     auto& next_scheduler = *system.Kernel().CurrentScheduler();
 | |
|     next_scheduler.SwitchContextStep2();
 | |
| }
 | |
| 
 | |
| void KScheduler::OnSwitch(void* this_scheduler) {
 | |
|     KScheduler* sched = static_cast<KScheduler*>(this_scheduler);
 | |
|     sched->SwitchToCurrent();
 | |
| }
 | |
| 
 | |
| void KScheduler::SwitchToCurrent() {
 | |
|     while (true) {
 | |
|         {
 | |
|             KScopedSpinLock lk{guard};
 | |
|             current_thread.store(state.highest_priority_thread);
 | |
|             state.needs_scheduling.store(false);
 | |
|         }
 | |
|         const auto is_switch_pending = [this] {
 | |
|             KScopedSpinLock lk{guard};
 | |
|             return state.needs_scheduling.load();
 | |
|         };
 | |
|         do {
 | |
|             auto next_thread = current_thread.load();
 | |
|             if (next_thread != nullptr) {
 | |
|                 next_thread->context_guard.Lock();
 | |
|                 if (next_thread->GetRawState() != ThreadState::Runnable) {
 | |
|                     next_thread->context_guard.Unlock();
 | |
|                     break;
 | |
|                 }
 | |
|                 if (next_thread->GetActiveCore() != core_id) {
 | |
|                     next_thread->context_guard.Unlock();
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             auto thread = next_thread ? next_thread : idle_thread;
 | |
|             Common::Fiber::YieldTo(switch_fiber, *thread->GetHostContext());
 | |
|         } while (!is_switch_pending());
 | |
|     }
 | |
| }
 | |
| 
 | |
| void KScheduler::UpdateLastContextSwitchTime(KThread* thread, KProcess* process) {
 | |
|     const u64 prev_switch_ticks = last_context_switch_time;
 | |
|     const u64 most_recent_switch_ticks = system.CoreTiming().GetCPUTicks();
 | |
|     const u64 update_ticks = most_recent_switch_ticks - prev_switch_ticks;
 | |
| 
 | |
|     if (thread != nullptr) {
 | |
|         thread->AddCpuTime(core_id, update_ticks);
 | |
|     }
 | |
| 
 | |
|     if (process != nullptr) {
 | |
|         process->UpdateCPUTimeTicks(update_ticks);
 | |
|     }
 | |
| 
 | |
|     last_context_switch_time = most_recent_switch_ticks;
 | |
| }
 | |
| 
 | |
| void KScheduler::Initialize() {
 | |
|     idle_thread = KThread::Create(system.Kernel());
 | |
|     ASSERT(KThread::InitializeIdleThread(system, idle_thread, core_id).IsSuccess());
 | |
|     idle_thread->SetName(fmt::format("IdleThread:{}", core_id));
 | |
| }
 | |
| 
 | |
| KScopedSchedulerLock::KScopedSchedulerLock(KernelCore& kernel)
 | |
|     : KScopedLock(kernel.GlobalSchedulerContext().SchedulerLock()) {}
 | |
| 
 | |
| KScopedSchedulerLock::~KScopedSchedulerLock() = default;
 | |
| 
 | |
| } // namespace Kernel
 |