[memory] remove "fast" memcpy and memset (not fast at all), remove slow parallel impl and just use serial #188

Merged
crueter merged 1 commit from mmsetcopyimpl into master 2025-08-03 17:07:40 +02:00

View file

@ -35,115 +35,12 @@
namespace Core::Memory {
namespace {
inline void FastMemcpy(void* dst, const void* src, std::size_t size) {
// Fast path for small copies
switch (size) {
case 1:
*static_cast<u8*>(dst) = *static_cast<const u8*>(src);
break;
case 2:
*static_cast<u16*>(dst) = *static_cast<const u16*>(src);
break;
case 4:
*static_cast<u32*>(dst) = *static_cast<const u32*>(src);
break;
case 8:
*static_cast<u64*>(dst) = *static_cast<const u64*>(src);
break;
case 16: {
// Optimize for 16-byte copy (common case for SIMD registers)
const u64* src_64 = static_cast<const u64*>(src);
u64* dst_64 = static_cast<u64*>(dst);
dst_64[0] = src_64[0];
dst_64[1] = src_64[1];
break;
}
case 32: {
// Optimize for 32-byte copy
const u64* src_64 = static_cast<const u64*>(src);
u64* dst_64 = static_cast<u64*>(dst);
dst_64[0] = src_64[0];
dst_64[1] = src_64[1];
dst_64[2] = src_64[2];
dst_64[3] = src_64[3];
break;
}
case 64: {
// Optimize for 64-byte copy
const u64* src_64 = static_cast<const u64*>(src);
u64* dst_64 = static_cast<u64*>(dst);
dst_64[0] = src_64[0];
dst_64[1] = src_64[1];
dst_64[2] = src_64[2];
dst_64[3] = src_64[3];
dst_64[4] = src_64[4];
dst_64[5] = src_64[5];
dst_64[6] = src_64[6];
dst_64[7] = src_64[7];
break;
}
default:
// For larger sizes, use standard memcpy which is usually optimized by the compiler
std::memcpy(dst, src, size);
break;
}
}
inline void FastMemset(void* dst, int value, std::size_t size) {
// Fast path for small fills
switch (size) {
case 1:
*static_cast<u8*>(dst) = static_cast<u8>(value);
break;
case 2:
*static_cast<u16*>(dst) = static_cast<u16>(value);
break;
case 4:
*static_cast<u32*>(dst) = static_cast<u32>(value);
break;
case 8:
*static_cast<u64*>(dst) = static_cast<u64>(value);
break;
case 16: {
// Optimize for 16-byte fill (common case for SIMD registers)
u64* dst_64 = static_cast<u64*>(dst);
const u64 val64 = static_cast<u8>(value) * 0x0101010101010101ULL;
dst_64[0] = val64;
dst_64[1] = val64;
break;
}
default:
if (size <= 128 && value == 0) {
// Fast path for small zero-fills
u8* dst_bytes = static_cast<u8*>(dst);
for (std::size_t i = 0; i < size; i += 8) {
if (i + 8 <= size) {
*reinterpret_cast<u64*>(dst_bytes + i) = 0;
} else {
// Handle remaining bytes (less than 8)
for (std::size_t j = i; j < size; j++) {
dst_bytes[j] = 0;
}
}
}
} else {
// For larger sizes, use standard memset which is usually optimized by the compiler
std::memset(dst, value, size);
}
break;
}
}
bool AddressSpaceContains(const Common::PageTable& table, const Common::ProcessAddress addr,
static inline bool AddressSpaceContains(const Common::PageTable& table, const Common::ProcessAddress addr,
const std::size_t size) {
const Common::ProcessAddress max_addr = 1ULL << table.GetAddressSpaceBits();
return addr + size >= addr && addr + size <= max_addr;
}
} // namespace
// Implementation class used to keep the specifics of the memory subsystem hidden
// from outside classes. This also allows modification to the internals of the memory
// subsystem without needing to rebuild all files that make use of the memory interface.
@ -416,70 +313,28 @@ struct Memory::Impl {
LOG_ERROR(HW_Memory,
"Unmapped ReadBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
GetInteger(current_vaddr), GetInteger(src_addr), size);
FastMemset(dest_buffer, 0, copy_amount);
std::memset(dest_buffer, 0, copy_amount);
},
[&](const std::size_t copy_amount, const u8* const src_ptr) {
FastMemcpy(dest_buffer, src_ptr, copy_amount);
std::memcpy(dest_buffer, src_ptr, copy_amount);
},
[&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount,
const u8* const host_ptr) {
if constexpr (!UNSAFE) {
HandleRasterizerDownload(GetInteger(current_vaddr), copy_amount);
}
FastMemcpy(dest_buffer, host_ptr, copy_amount);
std::memcpy(dest_buffer, host_ptr, copy_amount);
},
[&](const std::size_t copy_amount) {
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
});
}
bool ReadBlockParallel(const Common::ProcessAddress src_addr, void* dest_buffer,
const std::size_t size) {
// Calculate chunk size based on thread count
const size_t chunk_size = (size + thread_count - 1) / thread_count;
// Create threads for parallel processing
std::vector<std::thread> threads;
threads.reserve(thread_count);
// Create a vector to store the results of each thread
std::vector<bool> results(thread_count, true);
// Split the work among threads
for (unsigned int i = 0; i < thread_count; ++i) {
const size_t offset = i * chunk_size;
if (offset >= size) {
break;
}
const size_t current_chunk_size = std::min(chunk_size, size - offset);
const Common::ProcessAddress current_addr = src_addr + offset;
void* current_dest = static_cast<u8*>(dest_buffer) + offset;
// Launch thread
threads.emplace_back([this, i, current_addr, current_dest, current_chunk_size, &results] {
results[i] = ReadBlockImpl<false>(current_addr, current_dest, current_chunk_size);
});
}
// Wait for all threads to complete
for (auto& thread : threads) {
thread.join();
}
// Check if all operations succeeded
return std::all_of(results.begin(), results.end(), [](bool result) { return result; });
}
bool ReadBlock(const Common::ProcessAddress src_addr, void* dest_buffer,
const std::size_t size) {
// For small reads, use the regular implementation
if (size < PARALLEL_THRESHOLD) {
return ReadBlockImpl<false>(src_addr, dest_buffer, size);
}
// For large reads, use parallel implementation
return ReadBlockParallel(src_addr, dest_buffer, size);
// TODO: If you want a proper multithreaded implementation (w/o cache coherency fights)
// use TBB or something that splits the job properly
return ReadBlockImpl<false>(src_addr, dest_buffer, size);
}
bool ReadBlockUnsafe(const Common::ProcessAddress src_addr, void* dest_buffer,
@ -515,67 +370,25 @@ struct Memory::Impl {
GetInteger(current_vaddr), GetInteger(dest_addr), size);
},
[&](const std::size_t copy_amount, u8* const dest_ptr) {
FastMemcpy(dest_ptr, src_buffer, copy_amount);
std::memcpy(dest_ptr, src_buffer, copy_amount);
},
[&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount,
u8* const host_ptr) {
if constexpr (!UNSAFE) {
HandleRasterizerWrite(GetInteger(current_vaddr), copy_amount);
}
FastMemcpy(host_ptr, src_buffer, copy_amount);
std::memcpy(host_ptr, src_buffer, copy_amount);
},
[&](const std::size_t copy_amount) {
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
});
}
bool WriteBlockParallel(const Common::ProcessAddress dest_addr, const void* src_buffer,
const std::size_t size) {
// Calculate chunk size based on thread count
const size_t chunk_size = (size + thread_count - 1) / thread_count;
// Create threads for parallel processing
std::vector<std::thread> threads;
threads.reserve(thread_count);
// Create a vector to store the results of each thread
std::vector<bool> results(thread_count, true);
// Split the work among threads
for (unsigned int i = 0; i < thread_count; ++i) {
const size_t offset = i * chunk_size;
if (offset >= size) {
break;
}
const size_t current_chunk_size = std::min(chunk_size, size - offset);
const Common::ProcessAddress current_addr = dest_addr + offset;
const void* current_src = static_cast<const u8*>(src_buffer) + offset;
// Launch thread
threads.emplace_back([this, i, current_addr, current_src, current_chunk_size, &results] {
results[i] = WriteBlockImpl<false>(current_addr, current_src, current_chunk_size);
});
}
// Wait for all threads to complete
for (auto& thread : threads) {
thread.join();
}
// Check if all operations succeeded
return std::all_of(results.begin(), results.end(), [](bool result) { return result; });
}
bool WriteBlock(const Common::ProcessAddress dest_addr, const void* src_buffer,
const std::size_t size) {
// For small writes, use the regular implementation
if (size < PARALLEL_THRESHOLD) {
return WriteBlockImpl<false>(dest_addr, src_buffer, size);
}
// For large writes, use parallel implementation
return WriteBlockParallel(dest_addr, src_buffer, size);
// TODO: If you want a proper multithreaded implementation (w/o cache coherency fights)
// use TBB or something that splits the job properly
return WriteBlockImpl<false>(dest_addr, src_buffer, size);
}
bool WriteBlockUnsafe(const Common::ProcessAddress dest_addr, const void* src_buffer,
@ -593,12 +406,12 @@ struct Memory::Impl {
GetInteger(current_vaddr), GetInteger(dest_addr), size);
},
[](const std::size_t copy_amount, u8* const dest_ptr) {
FastMemset(dest_ptr, 0, copy_amount);
std::memset(dest_ptr, 0, copy_amount);
},
[&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount,
u8* const host_ptr) {
HandleRasterizerWrite(GetInteger(current_vaddr), copy_amount);
FastMemset(host_ptr, 0, copy_amount);
std::memset(host_ptr, 0, copy_amount);
},
[](const std::size_t copy_amount) {});
}
@ -993,7 +806,7 @@ struct Memory::Impl {
},
[&]() { HandleRasterizerDownload(addr, sizeof(T)); });
if (ptr) {
FastMemcpy(&result, ptr, sizeof(T));
std::memcpy(&result, ptr, sizeof(T));
}
return result;
}
@ -1080,7 +893,7 @@ struct Memory::Impl {
},
[&]() { HandleRasterizerWrite(addr, sizeof(T)); });
if (ptr) {
FastMemcpy(ptr, &data, sizeof(T));
std::memcpy(ptr, &data, sizeof(T));
}
}
@ -1203,7 +1016,7 @@ struct Memory::Impl {
unsigned int thread_count = 2;
// Minimum size in bytes for which parallel processing is beneficial
static constexpr size_t PARALLEL_THRESHOLD = 64 * 1024; // 64 KB
//size_t PARALLEL_THRESHOLD = (L3 CACHE * NUM PHYSICAL CORES); // 64 KB
std::array<VideoCore::RasterizerDownloadArea, Core::Hardware::NUM_CPU_CORES>
rasterizer_read_areas{};
std::array<GPUDirtyState, Core::Hardware::NUM_CPU_CORES> rasterizer_write_areas{};