This commit is contained in:
MrPurple666 2025-04-30 16:19:06 -03:00
commit 7bd606bece
16 changed files with 798 additions and 136 deletions

View file

@ -84,6 +84,7 @@ private:
std::array<u64, 4> m_entropy{};
bool m_is_signaled{};
bool m_is_initialized{};
u32 m_pointer_buffer_size = 0x8000; // Default pointer buffer size (can be game-specific later)
bool m_is_application{};
bool m_is_default_application_system_resource{};
bool m_is_hbl{};
@ -239,6 +240,14 @@ public:
m_is_suspended = suspended;
}
u32 GetPointerBufferSize() const {
return m_pointer_buffer_size;
}
void SetPointerBufferSize(u32 size) {
m_pointer_buffer_size = size;
}
Result Terminate();
bool IsTerminated() const {

View file

@ -38,7 +38,7 @@ ICommonStateGetter::ICommonStateGetter(Core::System& system_, std::shared_ptr<Ap
{30, nullptr, "GetHomeButtonReaderLockAccessor"},
{31, D<&ICommonStateGetter::GetReaderLockAccessorEx>, "GetReaderLockAccessorEx"},
{32, D<&ICommonStateGetter::GetWriterLockAccessorEx>, "GetWriterLockAccessorEx"},
{40, D<&ICommonStateGetter::GetCradleFwVersion>, "GetCradleFwVersion"},
{40, nullptr, "GetCradleFwVersion"},
{50, D<&ICommonStateGetter::IsVrModeEnabled>, "IsVrModeEnabled"},
{51, D<&ICommonStateGetter::SetVrModeEnabled>, "SetVrModeEnabled"},
{52, D<&ICommonStateGetter::SetLcdBacklighOffEnabled>, "SetLcdBacklighOffEnabled"},
@ -172,17 +172,6 @@ Result ICommonStateGetter::GetBootMode(Out<PM::SystemBootMode> out_boot_mode) {
R_SUCCEED();
}
Result ICommonStateGetter::GetCradleFwVersion(OutArray<uint32_t, 4> out_version) {
LOG_DEBUG(Service_AM, "(STUBBED) called");
out_version[0] = 0;
out_version[1] = 0;
out_version[2] = 0;
out_version[3] = 0;
R_SUCCEED();
}
Result ICommonStateGetter::IsVrModeEnabled(Out<bool> out_is_vr_mode_enabled) {
LOG_DEBUG(Service_AM, "called");

View file

@ -39,7 +39,6 @@ private:
Result GetHdcpAuthenticationStateChangeEvent(OutCopyHandle<Kernel::KReadableEvent> out_event);
Result GetOperationMode(Out<OperationMode> out_operation_mode);
Result GetPerformanceMode(Out<APM::PerformanceMode> out_performance_mode);
Result GetCradleFwVersion(OutArray<uint32_t, 4> out_version);
Result GetBootMode(Out<PM::SystemBootMode> out_boot_mode);
Result IsVrModeEnabled(Out<bool> out_is_vr_mode_enabled);
Result SetVrModeEnabled(bool is_vr_mode_enabled);

View file

@ -68,13 +68,46 @@ void Controller::CloneCurrentObjectEx(HLERequestContext& ctx) {
}
void Controller::QueryPointerBufferSize(HLERequestContext& ctx) {
LOG_WARNING(Service, "(STUBBED) called");
LOG_DEBUG(Service, "called");
auto* process = Kernel::GetCurrentProcessPointer(kernel);
ASSERT(process != nullptr);
u32 buffer_size = process->GetPointerBufferSize();
if (buffer_size > std::numeric_limits<u16>::max()) {
LOG_WARNING(Service, "Pointer buffer size exceeds u16 max, clamping");
buffer_size = std::numeric_limits<u16>::max();
}
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(ResultSuccess);
rb.Push<u16>(0x8000);
rb.Push<u16>(static_cast<u16>(buffer_size));
}
void Controller::SetPointerBufferSize(HLERequestContext& ctx) {
LOG_DEBUG(Service, "called");
auto* process = Kernel::GetCurrentProcessPointer(kernel);
ASSERT(process != nullptr);
IPC::RequestParser rp{ctx};
u32 requested_size = rp.PopRaw<u32>();
if (requested_size > std::numeric_limits<u16>::max()) {
LOG_WARNING(Service, "Requested pointer buffer size too large, clamping to 0xFFFF");
requested_size = std::numeric_limits<u16>::max();
}
process->SetPointerBufferSize(requested_size);
LOG_INFO(Service, "Pointer buffer size dynamically updated to {:#x} bytes by process", requested_size);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultSuccess);
}
// https://switchbrew.org/wiki/IPC_Marshalling
Controller::Controller(Core::System& system_) : ServiceFramework{system_, "IpcController"} {
static const FunctionInfo functions[] = {
@ -83,6 +116,7 @@ Controller::Controller(Core::System& system_) : ServiceFramework{system_, "IpcCo
{2, &Controller::CloneCurrentObject, "CloneCurrentObject"},
{3, &Controller::QueryPointerBufferSize, "QueryPointerBufferSize"},
{4, &Controller::CloneCurrentObjectEx, "CloneCurrentObjectEx"},
{5, &Controller::SetPointerBufferSize, "SetPointerBufferSize"},
};
RegisterHandlers(functions);
}

View file

@ -21,6 +21,7 @@ private:
void CloneCurrentObject(HLERequestContext& ctx);
void CloneCurrentObjectEx(HLERequestContext& ctx);
void QueryPointerBufferSize(HLERequestContext& ctx);
void SetPointerBufferSize(HLERequestContext& ctx);
};
} // namespace Service::SM

View file

@ -15,9 +15,20 @@
#include "core/loader/deconstructed_rom_directory.h"
#include "core/loader/nca.h"
#include "mbedtls/sha256.h"
#include "common/literals.h"
namespace Loader {
static u32 CalculatePointerBufferSize(size_t heap_size) {
if (heap_size > 1073741824) { // Games with 1 GiB
return 0x10000;
} else if (heap_size > 536870912) { // Games with 512 MiB
return 0xC000;
} else {
return 0x8000; // Default for all other games
}
}
AppLoader_NCA::AppLoader_NCA(FileSys::VirtualFile file_)
: AppLoader(std::move(file_)), nca(std::make_unique<FileSys::NCA>(file)) {}
@ -52,8 +63,6 @@ AppLoader_NCA::LoadResult AppLoader_NCA::Load(Kernel::KProcess& process, Core::S
if (exefs == nullptr) {
LOG_INFO(Loader, "No ExeFS found in NCA, looking for ExeFS from update");
// This NCA may be a sparse base of an installed title.
// Try to fetch the ExeFS from the installed update.
const auto& installed = system.GetContentProvider();
const auto update_nca = installed.GetEntry(FileSys::GetUpdateTitleID(nca->GetTitleId()),
FileSys::ContentRecordType::Program);
@ -69,11 +78,37 @@ AppLoader_NCA::LoadResult AppLoader_NCA::Load(Kernel::KProcess& process, Core::S
directory_loader = std::make_unique<AppLoader_DeconstructedRomDirectory>(exefs, true);
// Read heap size from main.npdm in ExeFS
u64 heap_size = 0;
if (exefs) {
const auto npdm_file = exefs->GetFile("main.npdm");
if (npdm_file) {
auto npdm_data = npdm_file->ReadAllBytes();
if (npdm_data.size() >= 0x30) {
heap_size = *reinterpret_cast<const u64*>(&npdm_data[0x28]);
LOG_INFO(Loader, "Read heap size {:#x} bytes from main.npdm", heap_size);
} else {
LOG_WARNING(Loader, "main.npdm too small to read heap size!");
}
} else {
LOG_WARNING(Loader, "No main.npdm found in ExeFS!");
}
}
// Set pointer buffer size based on heap size
process.SetPointerBufferSize(CalculatePointerBufferSize(heap_size));
// Load modules
const auto load_result = directory_loader->Load(process, system);
if (load_result.first != ResultStatus::Success) {
return load_result;
}
LOG_INFO(Loader, "Set pointer buffer size to {:#x} bytes for ProgramID {:#018x} (Heap size: {:#x})",
process.GetPointerBufferSize(), nca->GetTitleId(), heap_size);
// Register the process in the file system controller
system.GetFileSystemController().RegisterProcess(
process.GetProcessId(), nca->GetTitleId(),
std::make_shared<FileSys::RomFSFactory>(*this, system.GetContentProvider(),

View file

@ -6,6 +6,8 @@
#include <cstring>
#include <mutex>
#include <span>
#include <thread>
#include <vector>
#include "common/assert.h"
#include "common/atomic_ops.h"
@ -32,6 +34,105 @@ namespace Core::Memory {
namespace {
inline void FastMemcpy(void* dst, const void* src, std::size_t size) {
// Fast path for small copies
switch (size) {
case 1:
*static_cast<u8*>(dst) = *static_cast<const u8*>(src);
break;
case 2:
*static_cast<u16*>(dst) = *static_cast<const u16*>(src);
break;
case 4:
*static_cast<u32*>(dst) = *static_cast<const u32*>(src);
break;
case 8:
*static_cast<u64*>(dst) = *static_cast<const u64*>(src);
break;
case 16: {
// Optimize for 16-byte copy (common case for SIMD registers)
const u64* src_64 = static_cast<const u64*>(src);
u64* dst_64 = static_cast<u64*>(dst);
dst_64[0] = src_64[0];
dst_64[1] = src_64[1];
break;
}
case 32: {
// Optimize for 32-byte copy
const u64* src_64 = static_cast<const u64*>(src);
u64* dst_64 = static_cast<u64*>(dst);
dst_64[0] = src_64[0];
dst_64[1] = src_64[1];
dst_64[2] = src_64[2];
dst_64[3] = src_64[3];
break;
}
case 64: {
// Optimize for 64-byte copy
const u64* src_64 = static_cast<const u64*>(src);
u64* dst_64 = static_cast<u64*>(dst);
dst_64[0] = src_64[0];
dst_64[1] = src_64[1];
dst_64[2] = src_64[2];
dst_64[3] = src_64[3];
dst_64[4] = src_64[4];
dst_64[5] = src_64[5];
dst_64[6] = src_64[6];
dst_64[7] = src_64[7];
break;
}
default:
// For larger sizes, use standard memcpy which is usually optimized by the compiler
std::memcpy(dst, src, size);
break;
}
}
inline void FastMemset(void* dst, int value, std::size_t size) {
// Fast path for small fills
switch (size) {
case 1:
*static_cast<u8*>(dst) = static_cast<u8>(value);
break;
case 2:
*static_cast<u16*>(dst) = static_cast<u16>(value);
break;
case 4:
*static_cast<u32*>(dst) = static_cast<u32>(value);
break;
case 8:
*static_cast<u64*>(dst) = static_cast<u64>(value);
break;
case 16: {
// Optimize for 16-byte fill (common case for SIMD registers)
u64* dst_64 = static_cast<u64*>(dst);
const u64 val64 = static_cast<u8>(value) * 0x0101010101010101ULL;
dst_64[0] = val64;
dst_64[1] = val64;
break;
}
default:
if (size <= 128 && value == 0) {
// Fast path for small zero-fills
u8* dst_bytes = static_cast<u8*>(dst);
for (std::size_t i = 0; i < size; i += 8) {
if (i + 8 <= size) {
*reinterpret_cast<u64*>(dst_bytes + i) = 0;
} else {
// Handle remaining bytes (less than 8)
for (std::size_t j = i; j < size; j++) {
dst_bytes[j] = 0;
}
}
}
} else {
// For larger sizes, use standard memset which is usually optimized by the compiler
std::memset(dst, value, size);
}
break;
}
}
bool AddressSpaceContains(const Common::PageTable& table, const Common::ProcessAddress addr,
const std::size_t size) {
const Common::ProcessAddress max_addr = 1ULL << table.GetAddressSpaceBits();
@ -44,7 +145,11 @@ bool AddressSpaceContains(const Common::PageTable& table, const Common::ProcessA
// from outside classes. This also allows modification to the internals of the memory
// subsystem without needing to rebuild all files that make use of the memory interface.
struct Memory::Impl {
explicit Impl(Core::System& system_) : system{system_} {}
explicit Impl(Core::System& system_) : system{system_} {
// Initialize thread count based on available cores for parallel memory operations
const unsigned int hw_concurrency = std::thread::hardware_concurrency();
thread_count = std::max(2u, std::min(hw_concurrency, 8u)); // Limit to 8 threads max
}
void SetCurrentPageTable(Kernel::KProcess& process) {
current_page_table = &process.GetPageTable().GetImpl();
@ -308,26 +413,70 @@ struct Memory::Impl {
LOG_ERROR(HW_Memory,
"Unmapped ReadBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
GetInteger(current_vaddr), GetInteger(src_addr), size);
std::memset(dest_buffer, 0, copy_amount);
FastMemset(dest_buffer, 0, copy_amount);
},
[&](const std::size_t copy_amount, const u8* const src_ptr) {
std::memcpy(dest_buffer, src_ptr, copy_amount);
FastMemcpy(dest_buffer, src_ptr, copy_amount);
},
[&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount,
const u8* const host_ptr) {
if constexpr (!UNSAFE) {
HandleRasterizerDownload(GetInteger(current_vaddr), copy_amount);
}
std::memcpy(dest_buffer, host_ptr, copy_amount);
FastMemcpy(dest_buffer, host_ptr, copy_amount);
},
[&](const std::size_t copy_amount) {
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
});
}
bool ReadBlockParallel(const Common::ProcessAddress src_addr, void* dest_buffer,
const std::size_t size) {
// Calculate chunk size based on thread count
const size_t chunk_size = (size + thread_count - 1) / thread_count;
// Create threads for parallel processing
std::vector<std::thread> threads;
threads.reserve(thread_count);
// Create a vector to store the results of each thread
std::vector<bool> results(thread_count, true);
// Split the work among threads
for (unsigned int i = 0; i < thread_count; ++i) {
const size_t offset = i * chunk_size;
if (offset >= size) {
break;
}
const size_t current_chunk_size = std::min(chunk_size, size - offset);
const Common::ProcessAddress current_addr = src_addr + offset;
void* current_dest = static_cast<u8*>(dest_buffer) + offset;
// Launch thread
threads.emplace_back([this, i, current_addr, current_dest, current_chunk_size, &results] {
results[i] = ReadBlockImpl<false>(current_addr, current_dest, current_chunk_size);
});
}
// Wait for all threads to complete
for (auto& thread : threads) {
thread.join();
}
// Check if all operations succeeded
return std::all_of(results.begin(), results.end(), [](bool result) { return result; });
}
bool ReadBlock(const Common::ProcessAddress src_addr, void* dest_buffer,
const std::size_t size) {
return ReadBlockImpl<false>(src_addr, dest_buffer, size);
// For small reads, use the regular implementation
if (size < PARALLEL_THRESHOLD) {
return ReadBlockImpl<false>(src_addr, dest_buffer, size);
}
// For large reads, use parallel implementation
return ReadBlockParallel(src_addr, dest_buffer, size);
}
bool ReadBlockUnsafe(const Common::ProcessAddress src_addr, void* dest_buffer,
@ -363,23 +512,67 @@ struct Memory::Impl {
GetInteger(current_vaddr), GetInteger(dest_addr), size);
},
[&](const std::size_t copy_amount, u8* const dest_ptr) {
std::memcpy(dest_ptr, src_buffer, copy_amount);
FastMemcpy(dest_ptr, src_buffer, copy_amount);
},
[&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount,
u8* const host_ptr) {
if constexpr (!UNSAFE) {
HandleRasterizerWrite(GetInteger(current_vaddr), copy_amount);
}
std::memcpy(host_ptr, src_buffer, copy_amount);
FastMemcpy(host_ptr, src_buffer, copy_amount);
},
[&](const std::size_t copy_amount) {
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
});
}
bool WriteBlockParallel(const Common::ProcessAddress dest_addr, const void* src_buffer,
const std::size_t size) {
// Calculate chunk size based on thread count
const size_t chunk_size = (size + thread_count - 1) / thread_count;
// Create threads for parallel processing
std::vector<std::thread> threads;
threads.reserve(thread_count);
// Create a vector to store the results of each thread
std::vector<bool> results(thread_count, true);
// Split the work among threads
for (unsigned int i = 0; i < thread_count; ++i) {
const size_t offset = i * chunk_size;
if (offset >= size) {
break;
}
const size_t current_chunk_size = std::min(chunk_size, size - offset);
const Common::ProcessAddress current_addr = dest_addr + offset;
const void* current_src = static_cast<const u8*>(src_buffer) + offset;
// Launch thread
threads.emplace_back([this, i, current_addr, current_src, current_chunk_size, &results] {
results[i] = WriteBlockImpl<false>(current_addr, current_src, current_chunk_size);
});
}
// Wait for all threads to complete
for (auto& thread : threads) {
thread.join();
}
// Check if all operations succeeded
return std::all_of(results.begin(), results.end(), [](bool result) { return result; });
}
bool WriteBlock(const Common::ProcessAddress dest_addr, const void* src_buffer,
const std::size_t size) {
return WriteBlockImpl<false>(dest_addr, src_buffer, size);
// For small writes, use the regular implementation
if (size < PARALLEL_THRESHOLD) {
return WriteBlockImpl<false>(dest_addr, src_buffer, size);
}
// For large writes, use parallel implementation
return WriteBlockParallel(dest_addr, src_buffer, size);
}
bool WriteBlockUnsafe(const Common::ProcessAddress dest_addr, const void* src_buffer,
@ -397,12 +590,12 @@ struct Memory::Impl {
GetInteger(current_vaddr), GetInteger(dest_addr), size);
},
[](const std::size_t copy_amount, u8* const dest_ptr) {
std::memset(dest_ptr, 0, copy_amount);
FastMemset(dest_ptr, 0, copy_amount);
},
[&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount,
u8* const host_ptr) {
HandleRasterizerWrite(GetInteger(current_vaddr), copy_amount);
std::memset(host_ptr, 0, copy_amount);
FastMemset(host_ptr, 0, copy_amount);
},
[](const std::size_t copy_amount) {});
}
@ -733,16 +926,71 @@ struct Memory::Impl {
*/
template <typename T>
T Read(Common::ProcessAddress vaddr) {
// Fast path for aligned reads of common sizes
const u64 addr = GetInteger(vaddr);
if constexpr (std::is_same_v<T, u8> || std::is_same_v<T, s8>) {
// 8-bit reads are always aligned
const u8* const ptr = GetPointerImpl(
addr,
[addr]() {
LOG_ERROR(HW_Memory, "Unmapped Read8 @ 0x{:016X}", addr);
},
[&]() { HandleRasterizerDownload(addr, sizeof(T)); });
if (ptr) {
return static_cast<T>(*ptr);
}
return 0;
} else if constexpr (std::is_same_v<T, u16_le> || std::is_same_v<T, s16_le>) {
// Check alignment for 16-bit reads
if ((addr & 1) == 0) {
const u8* const ptr = GetPointerImpl(
addr,
[addr]() {
LOG_ERROR(HW_Memory, "Unmapped Read16 @ 0x{:016X}", addr);
},
[&]() { HandleRasterizerDownload(addr, sizeof(T)); });
if (ptr) {
return static_cast<T>(*reinterpret_cast<const u16*>(ptr));
}
}
} else if constexpr (std::is_same_v<T, u32_le> || std::is_same_v<T, s32_le>) {
// Check alignment for 32-bit reads
if ((addr & 3) == 0) {
const u8* const ptr = GetPointerImpl(
addr,
[addr]() {
LOG_ERROR(HW_Memory, "Unmapped Read32 @ 0x{:016X}", addr);
},
[&]() { HandleRasterizerDownload(addr, sizeof(T)); });
if (ptr) {
return static_cast<T>(*reinterpret_cast<const u32*>(ptr));
}
}
} else if constexpr (std::is_same_v<T, u64_le> || std::is_same_v<T, s64_le>) {
// Check alignment for 64-bit reads
if ((addr & 7) == 0) {
const u8* const ptr = GetPointerImpl(
addr,
[addr]() {
LOG_ERROR(HW_Memory, "Unmapped Read64 @ 0x{:016X}", addr);
},
[&]() { HandleRasterizerDownload(addr, sizeof(T)); });
if (ptr) {
return static_cast<T>(*reinterpret_cast<const u64*>(ptr));
}
}
}
// Fall back to the general case for other types or unaligned access
T result = 0;
const u8* const ptr = GetPointerImpl(
GetInteger(vaddr),
[vaddr]() {
LOG_ERROR(HW_Memory, "Unmapped Read{} @ 0x{:016X}", sizeof(T) * 8,
GetInteger(vaddr));
addr,
[addr]() {
LOG_ERROR(HW_Memory, "Unmapped Read{} @ 0x{:016X}", sizeof(T) * 8, addr);
},
[&]() { HandleRasterizerDownload(GetInteger(vaddr), sizeof(T)); });
[&]() { HandleRasterizerDownload(addr, sizeof(T)); });
if (ptr) {
std::memcpy(&result, ptr, sizeof(T));
FastMemcpy(&result, ptr, sizeof(T));
}
return result;
}
@ -758,15 +1006,78 @@ struct Memory::Impl {
*/
template <typename T>
void Write(Common::ProcessAddress vaddr, const T data) {
// Fast path for aligned writes of common sizes
const u64 addr = GetInteger(vaddr);
if constexpr (std::is_same_v<T, u8> || std::is_same_v<T, s8>) {
// 8-bit writes are always aligned
u8* const ptr = GetPointerImpl(
addr,
[addr, data]() {
LOG_ERROR(HW_Memory, "Unmapped Write8 @ 0x{:016X} = 0x{:02X}", addr,
static_cast<u8>(data));
},
[&]() { HandleRasterizerWrite(addr, sizeof(T)); });
if (ptr) {
*ptr = static_cast<u8>(data);
}
return;
} else if constexpr (std::is_same_v<T, u16_le> || std::is_same_v<T, s16_le>) {
// Check alignment for 16-bit writes
if ((addr & 1) == 0) {
u8* const ptr = GetPointerImpl(
addr,
[addr, data]() {
LOG_ERROR(HW_Memory, "Unmapped Write16 @ 0x{:016X} = 0x{:04X}", addr,
static_cast<u16>(data));
},
[&]() { HandleRasterizerWrite(addr, sizeof(T)); });
if (ptr) {
*reinterpret_cast<u16*>(ptr) = static_cast<u16>(data);
return;
}
}
} else if constexpr (std::is_same_v<T, u32_le> || std::is_same_v<T, s32_le>) {
// Check alignment for 32-bit writes
if ((addr & 3) == 0) {
u8* const ptr = GetPointerImpl(
addr,
[addr, data]() {
LOG_ERROR(HW_Memory, "Unmapped Write32 @ 0x{:016X} = 0x{:08X}", addr,
static_cast<u32>(data));
},
[&]() { HandleRasterizerWrite(addr, sizeof(T)); });
if (ptr) {
*reinterpret_cast<u32*>(ptr) = static_cast<u32>(data);
return;
}
}
} else if constexpr (std::is_same_v<T, u64_le> || std::is_same_v<T, s64_le>) {
// Check alignment for 64-bit writes
if ((addr & 7) == 0) {
u8* const ptr = GetPointerImpl(
addr,
[addr, data]() {
LOG_ERROR(HW_Memory, "Unmapped Write64 @ 0x{:016X} = 0x{:016X}", addr,
static_cast<u64>(data));
},
[&]() { HandleRasterizerWrite(addr, sizeof(T)); });
if (ptr) {
*reinterpret_cast<u64*>(ptr) = static_cast<u64>(data);
return;
}
}
}
// Fall back to the general case for other types or unaligned access
u8* const ptr = GetPointerImpl(
GetInteger(vaddr),
[vaddr, data]() {
addr,
[addr, data]() {
LOG_ERROR(HW_Memory, "Unmapped Write{} @ 0x{:016X} = 0x{:016X}", sizeof(T) * 8,
GetInteger(vaddr), static_cast<u64>(data));
addr, static_cast<u64>(data));
},
[&]() { HandleRasterizerWrite(GetInteger(vaddr), sizeof(T)); });
[&]() { HandleRasterizerWrite(addr, sizeof(T)); });
if (ptr) {
std::memcpy(ptr, &data, sizeof(T));
FastMemcpy(ptr, &data, sizeof(T));
}
}
@ -878,6 +1189,12 @@ struct Memory::Impl {
Core::System& system;
Tegra::MaxwellDeviceMemoryManager* gpu_device_memory{};
Common::PageTable* current_page_table = nullptr;
// Number of threads to use for parallel memory operations
unsigned int thread_count = 2;
// Minimum size in bytes for which parallel processing is beneficial
static constexpr size_t PARALLEL_THRESHOLD = 64 * 1024; // 64 KB
std::array<VideoCore::RasterizerDownloadArea, Core::Hardware::NUM_CPU_CORES>
rasterizer_read_areas{};
std::array<GPUDirtyState, Core::Hardware::NUM_CPU_CORES> rasterizer_write_areas{};