1
0
Fork 0
forked from eden-emu/eden
ribbitvulkanadditions/externals/dynarmic/src/dynarmic/backend/x64/reg_alloc.cpp

675 lines
24 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2016 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include "dynarmic/backend/x64/reg_alloc.h"
#include <algorithm>
#include <numeric>
#include <utility>
#include <fmt/ostream.h>
#include <mcl/assert.hpp>
#include <mcl/bit_cast.hpp>
#include <xbyak/xbyak.h>
#include "dynarmic/backend/x64/abi.h"
#include "dynarmic/backend/x64/stack_layout.h"
#include "dynarmic/backend/x64/verbose_debugging_output.h"
namespace Dynarmic::Backend::X64 {
#define MAYBE_AVX(OPCODE, ...) \
[&] { \
if (code->HasHostFeature(HostFeature::AVX)) { \
code->v##OPCODE(__VA_ARGS__); \
} else { \
code->OPCODE(__VA_ARGS__); \
} \
}()
static inline bool CanExchange(const HostLoc a, const HostLoc b) noexcept {
return HostLocIsGPR(a) && HostLocIsGPR(b);
}
// Minimum number of bits required to represent a type
static inline size_t GetBitWidth(const IR::Type type) noexcept {
switch (type) {
case IR::Type::A32Reg:
case IR::Type::A32ExtReg:
case IR::Type::A64Reg:
case IR::Type::A64Vec:
case IR::Type::CoprocInfo:
case IR::Type::Cond:
case IR::Type::Void:
case IR::Type::Table:
case IR::Type::AccType:
ASSERT_FALSE("Type {} cannot be represented at runtime", type);
case IR::Type::Opaque:
ASSERT_FALSE("Not a concrete type");
case IR::Type::U1:
return 8;
case IR::Type::U8:
return 8;
case IR::Type::U16:
return 16;
case IR::Type::U32:
return 32;
case IR::Type::U64:
return 64;
case IR::Type::U128:
return 128;
case IR::Type::NZCVFlags:
return 32; // TODO: Update to 16 when flags optimization is done
}
UNREACHABLE();
}
static inline bool IsValuelessType(const IR::Type type) noexcept {
switch (type) {
case IR::Type::Table:
return true;
default:
return false;
}
}
void HostLocInfo::ReleaseOne() noexcept {
is_being_used_count--;
is_scratch = false;
if (current_references == 0)
return;
ASSERT(size_t(accumulated_uses) + 1 < std::numeric_limits<uint16_t>::max());
accumulated_uses++;
current_references--;
if (current_references == 0)
ReleaseAll();
}
void HostLocInfo::ReleaseAll() noexcept {
accumulated_uses += current_references;
current_references = 0;
is_set_last_use = false;
if (total_uses == accumulated_uses) {
values.clear();
accumulated_uses = 0;
total_uses = 0;
max_bit_width = 0;
}
is_being_used_count = 0;
is_scratch = false;
}
void HostLocInfo::AddValue(IR::Inst* inst) noexcept {
if (is_set_last_use) {
is_set_last_use = false;
values.clear();
}
values.push_back(inst);
ASSERT(size_t(total_uses) + inst->UseCount() < std::numeric_limits<uint16_t>::max());
total_uses += inst->UseCount();
max_bit_width = std::max<uint8_t>(max_bit_width, GetBitWidth(inst->GetType()));
}
void HostLocInfo::EmitVerboseDebuggingOutput(BlockOfCode* code, size_t host_loc_index) const noexcept {
using namespace Xbyak::util;
for (auto const value : values) {
code->mov(code->ABI_PARAM1, rsp);
code->mov(code->ABI_PARAM2, host_loc_index);
code->mov(code->ABI_PARAM3, value->GetName());
code->mov(code->ABI_PARAM4, GetBitWidth(value->GetType()));
code->CallFunction(PrintVerboseDebuggingOutputLine);
}
}
bool Argument::FitsInImmediateU32() const noexcept {
if (!IsImmediate())
return false;
const u64 imm = value.GetImmediateAsU64();
return imm < 0x100000000;
}
bool Argument::FitsInImmediateS32() const noexcept {
if (!IsImmediate())
return false;
const s64 imm = static_cast<s64>(value.GetImmediateAsU64());
return -s64(0x80000000) <= imm && imm <= s64(0x7FFFFFFF);
}
bool Argument::GetImmediateU1() const noexcept {
return value.GetU1();
}
u8 Argument::GetImmediateU8() const noexcept {
const u64 imm = value.GetImmediateAsU64();
ASSERT(imm < 0x100);
return u8(imm);
}
u16 Argument::GetImmediateU16() const noexcept {
const u64 imm = value.GetImmediateAsU64();
ASSERT(imm < 0x10000);
return u16(imm);
}
u32 Argument::GetImmediateU32() const noexcept {
const u64 imm = value.GetImmediateAsU64();
ASSERT(imm < 0x100000000);
return u32(imm);
}
u64 Argument::GetImmediateS32() const noexcept {
ASSERT(FitsInImmediateS32());
return value.GetImmediateAsU64();
}
u64 Argument::GetImmediateU64() const noexcept {
return value.GetImmediateAsU64();
}
IR::Cond Argument::GetImmediateCond() const noexcept {
ASSERT(IsImmediate() && GetType() == IR::Type::Cond);
return value.GetCond();
}
IR::AccType Argument::GetImmediateAccType() const noexcept {
ASSERT(IsImmediate() && GetType() == IR::Type::AccType);
return value.GetAccType();
}
/// Is this value currently in a GPR?
bool Argument::IsInGpr() const noexcept {
if (IsImmediate())
return false;
return HostLocIsGPR(*reg_alloc.ValueLocation(value.GetInst()));
}
/// Is this value currently in a XMM?
bool Argument::IsInXmm() const noexcept {
if (IsImmediate())
return false;
return HostLocIsXMM(*reg_alloc.ValueLocation(value.GetInst()));
}
/// Is this value currently in memory?
bool Argument::IsInMemory() const noexcept {
if (IsImmediate())
return false;
return HostLocIsSpill(*reg_alloc.ValueLocation(value.GetInst()));
}
RegAlloc::RegAlloc(BlockOfCode* code, boost::container::static_vector<HostLoc, 28> gpr_order, boost::container::static_vector<HostLoc, 28> xmm_order) noexcept
: gpr_order(gpr_order),
xmm_order(xmm_order),
code(code)
{
}
//static std::uint64_t Zfncwjkrt_blockOfCodeShim = 0;
RegAlloc::ArgumentInfo RegAlloc::GetArgumentInfo(const IR::Inst* inst) noexcept {
ArgumentInfo ret{Argument{*this}, Argument{*this}, Argument{*this}, Argument{*this}};
for (size_t i = 0; i < inst->NumArgs(); i++) {
const auto arg = inst->GetArg(i);
ret[i].value = arg;
if (!arg.IsImmediate() && !IsValuelessType(arg.GetType())) {
ASSERT_MSG(ValueLocation(arg.GetInst()), "argument must already been defined");
LocInfo(*ValueLocation(arg.GetInst())).AddArgReference();
}
}
return ret;
}
void RegAlloc::RegisterPseudoOperation(const IR::Inst* inst) noexcept {
ASSERT(IsValueLive(inst) || !inst->HasUses());
for (size_t i = 0; i < inst->NumArgs(); i++) {
const auto arg = inst->GetArg(i);
if (!arg.IsImmediate() && !IsValuelessType(arg.GetType())) {
if (const auto loc = ValueLocation(arg.GetInst())) {
// May not necessarily have a value (e.g. CMP variant of Sub32).
LocInfo(*loc).AddArgReference();
}
}
}
}
Xbyak::Reg64 RegAlloc::UseScratchGpr(Argument& arg) noexcept {
ASSERT(!arg.allocated);
arg.allocated = true;
return HostLocToReg64(UseScratchImpl(arg.value, gpr_order));
}
Xbyak::Xmm RegAlloc::UseScratchXmm(Argument& arg) noexcept {
ASSERT(!arg.allocated);
arg.allocated = true;
return HostLocToXmm(UseScratchImpl(arg.value, xmm_order));
}
void RegAlloc::UseScratch(Argument& arg, HostLoc host_loc) noexcept {
ASSERT(!arg.allocated);
arg.allocated = true;
UseScratchImpl(arg.value, {host_loc});
}
void RegAlloc::DefineValue(IR::Inst* inst, const Xbyak::Reg& reg) noexcept {
ASSERT(reg.getKind() == Xbyak::Operand::XMM || reg.getKind() == Xbyak::Operand::REG);
const auto hostloc = static_cast<HostLoc>(reg.getIdx() + static_cast<size_t>(reg.getKind() == Xbyak::Operand::XMM ? HostLoc::XMM0 : HostLoc::RAX));
DefineValueImpl(inst, hostloc);
}
void RegAlloc::DefineValue(IR::Inst* inst, Argument& arg) noexcept {
ASSERT(!arg.allocated);
arg.allocated = true;
DefineValueImpl(inst, arg.value);
}
void RegAlloc::Release(const Xbyak::Reg& reg) noexcept {
ASSERT(reg.getKind() == Xbyak::Operand::XMM || reg.getKind() == Xbyak::Operand::REG);
const auto hostloc = static_cast<HostLoc>(reg.getIdx() + static_cast<size_t>(reg.getKind() == Xbyak::Operand::XMM ? HostLoc::XMM0 : HostLoc::RAX));
LocInfo(hostloc).ReleaseOne();
}
HostLoc RegAlloc::UseImpl(IR::Value use_value, const boost::container::static_vector<HostLoc, 28>& desired_locations) noexcept {
if (use_value.IsImmediate()) {
return LoadImmediate(use_value, ScratchImpl(desired_locations));
}
const auto* use_inst = use_value.GetInst();
const HostLoc current_location = *ValueLocation(use_inst);
const size_t max_bit_width = LocInfo(current_location).GetMaxBitWidth();
const bool can_use_current_location = std::find(desired_locations.begin(), desired_locations.end(), current_location) != desired_locations.end();
if (can_use_current_location) {
LocInfo(current_location).ReadLock();
return current_location;
}
if (LocInfo(current_location).IsLocked()) {
return UseScratchImpl(use_value, desired_locations);
}
const HostLoc destination_location = SelectARegister(desired_locations);
if (max_bit_width > HostLocBitWidth(destination_location)) {
return UseScratchImpl(use_value, desired_locations);
} else if (CanExchange(destination_location, current_location)) {
Exchange(destination_location, current_location);
} else {
MoveOutOfTheWay(destination_location);
Move(destination_location, current_location);
}
LocInfo(destination_location).ReadLock();
return destination_location;
}
HostLoc RegAlloc::UseScratchImpl(IR::Value use_value, const boost::container::static_vector<HostLoc, 28>& desired_locations) noexcept {
if (use_value.IsImmediate()) {
return LoadImmediate(use_value, ScratchImpl(desired_locations));
}
const auto* use_inst = use_value.GetInst();
const HostLoc current_location = *ValueLocation(use_inst);
const size_t bit_width = GetBitWidth(use_inst->GetType());
const bool can_use_current_location = std::find(desired_locations.begin(), desired_locations.end(), current_location) != desired_locations.end();
if (can_use_current_location && !LocInfo(current_location).IsLocked()) {
if (!LocInfo(current_location).IsLastUse()) {
MoveOutOfTheWay(current_location);
} else {
LocInfo(current_location).SetLastUse();
}
LocInfo(current_location).WriteLock();
return current_location;
}
const HostLoc destination_location = SelectARegister(desired_locations);
MoveOutOfTheWay(destination_location);
CopyToScratch(bit_width, destination_location, current_location);
LocInfo(destination_location).WriteLock();
return destination_location;
}
HostLoc RegAlloc::ScratchImpl(const boost::container::static_vector<HostLoc, 28>& desired_locations) noexcept {
const HostLoc location = SelectARegister(desired_locations);
MoveOutOfTheWay(location);
LocInfo(location).WriteLock();
return location;
}
void RegAlloc::HostCall(IR::Inst* result_def,
const std::optional<Argument::copyable_reference> arg0,
const std::optional<Argument::copyable_reference> arg1,
const std::optional<Argument::copyable_reference> arg2,
const std::optional<Argument::copyable_reference> arg3
) noexcept {
constexpr size_t args_count = 4;
constexpr std::array<HostLoc, args_count> args_hostloc = {ABI_PARAM1, ABI_PARAM2, ABI_PARAM3, ABI_PARAM4};
const std::array<std::optional<Argument::copyable_reference>, args_count> args = {arg0, arg1, arg2, arg3};
static const boost::container::static_vector<HostLoc, 28> other_caller_save = [args_hostloc]() noexcept {
boost::container::static_vector<HostLoc, 28> ret(ABI_ALL_CALLER_SAVE.begin(), ABI_ALL_CALLER_SAVE.end());
ret.erase(std::find(ret.begin(), ret.end(), ABI_RETURN));
for (auto const hostloc : args_hostloc) {
ret.erase(std::find(ret.begin(), ret.end(), hostloc));
}
return ret;
}();
ScratchGpr(ABI_RETURN);
if (result_def) {
DefineValueImpl(result_def, ABI_RETURN);
}
for (size_t i = 0; i < args_count; i++) {
if (args[i] && !args[i]->get().IsVoid()) {
UseScratch(*args[i], args_hostloc[i]);
// LLVM puts the burden of zero-extension of 8 and 16 bit values on the caller instead of the callee
const Xbyak::Reg64 reg = HostLocToReg64(args_hostloc[i]);
switch (args[i]->get().GetType()) {
case IR::Type::U8:
code->movzx(reg.cvt32(), reg.cvt8());
break;
case IR::Type::U16:
code->movzx(reg.cvt32(), reg.cvt16());
break;
case IR::Type::U32:
code->mov(reg.cvt32(), reg.cvt32());
break;
default:
break; // Nothing needs to be done
}
}
}
for (size_t i = 0; i < args_count; i++) {
if (!args[i]) {
// TODO: Force spill
ScratchGpr(args_hostloc[i]);
}
}
for (HostLoc caller_saved : other_caller_save) {
ScratchImpl({caller_saved});
}
}
void RegAlloc::AllocStackSpace(const size_t stack_space) noexcept {
ASSERT(stack_space < static_cast<size_t>(std::numeric_limits<s32>::max()));
ASSERT(reserved_stack_space == 0);
reserved_stack_space = stack_space;
code->sub(code->rsp, static_cast<u32>(stack_space));
}
void RegAlloc::ReleaseStackSpace(const size_t stack_space) noexcept {
ASSERT(stack_space < static_cast<size_t>(std::numeric_limits<s32>::max()));
ASSERT(reserved_stack_space == stack_space);
reserved_stack_space = 0;
code->add(code->rsp, static_cast<u32>(stack_space));
}
HostLoc RegAlloc::SelectARegister(const boost::container::static_vector<HostLoc, 28>& desired_locations) const noexcept {
// TODO(lizzie): Overspill causes issues (reads to 0 and such) on some games, I need to make a testbench
// to later track this down - however I just modified the LRU algo so it prefers empty registers first
// we need to test high register pressure (and spills, maybe 32 regs?)
// Selects the best location out of the available locations.
// NOTE: Using last is BAD because new REX prefix for each insn using the last regs
// TODO: Actually do LRU or something. Currently we just try to pick something without a value if possible.
auto min_lru_counter = size_t(-1);
auto it_candidate = desired_locations.cend(); //default fallback if everything fails
auto it_rex_candidate = desired_locations.cend();
auto it_empty_candidate = desired_locations.cend();
for (auto it = desired_locations.cbegin(); it != desired_locations.cend(); it++) {
auto const& loc_info = LocInfo(*it);
// Abstain from using upper registers unless absolutely nescesary
if (loc_info.IsLocked()) {
// skip, not suitable for allocation
} else {
if (loc_info.lru_counter < min_lru_counter) {
if (loc_info.IsEmpty())
it_empty_candidate = it;
// Otherwise a "quasi"-LRU
min_lru_counter = loc_info.lru_counter;
if (*it >= HostLoc::R8 && *it <= HostLoc::R15) {
it_rex_candidate = it;
} else {
it_candidate = it;
}
if (min_lru_counter == 0)
break; //early exit
}
// only if not assigned (i.e for failcase of all LRU=0)
if (it_empty_candidate == desired_locations.cend() && loc_info.IsEmpty())
it_empty_candidate = it;
}
}
// Final resolution goes as follows:
// 1 => Try an empty candidate
// 2 => Try normal candidate (no REX prefix)
// 3 => Try using a REX prefixed one
// We avoid using REX-addressable registers because they add +1 REX prefix which
// do we really need? The trade-off may not be worth it.
auto const it_final = it_empty_candidate != desired_locations.cend()
? it_empty_candidate : it_candidate != desired_locations.cend()
? it_candidate : it_rex_candidate;
ASSERT_MSG(it_final != desired_locations.cend(), "All candidate registers have already been allocated");
// Evil magic - increment LRU counter (will wrap at 256)
const_cast<RegAlloc*>(this)->LocInfo(*it_final).lru_counter++;
return *it_final;
}
void RegAlloc::DefineValueImpl(IR::Inst* def_inst, HostLoc host_loc) noexcept {
ASSERT_MSG(!ValueLocation(def_inst), "def_inst has already been defined");
LocInfo(host_loc).AddValue(def_inst);
}
void RegAlloc::DefineValueImpl(IR::Inst* def_inst, const IR::Value& use_inst) noexcept {
ASSERT_MSG(!ValueLocation(def_inst), "def_inst has already been defined");
if (use_inst.IsImmediate()) {
const HostLoc location = ScratchImpl(gpr_order);
DefineValueImpl(def_inst, location);
LoadImmediate(use_inst, location);
return;
}
ASSERT_MSG(ValueLocation(use_inst.GetInst()), "use_inst must already be defined");
const HostLoc location = *ValueLocation(use_inst.GetInst());
DefineValueImpl(def_inst, location);
}
HostLoc RegAlloc::LoadImmediate(IR::Value imm, HostLoc host_loc) noexcept {
ASSERT_MSG(imm.IsImmediate(), "imm is not an immediate");
if (HostLocIsGPR(host_loc)) {
const Xbyak::Reg64 reg = HostLocToReg64(host_loc);
const u64 imm_value = imm.GetImmediateAsU64();
if (imm_value == 0) {
code->xor_(reg.cvt32(), reg.cvt32());
} else {
code->mov(reg, imm_value);
}
return host_loc;
}
if (HostLocIsXMM(host_loc)) {
const Xbyak::Xmm reg = HostLocToXmm(host_loc);
const u64 imm_value = imm.GetImmediateAsU64();
if (imm_value == 0) {
MAYBE_AVX(xorps, reg, reg);
} else {
MAYBE_AVX(movaps, reg, code->Const(code->xword, imm_value));
}
return host_loc;
}
UNREACHABLE();
}
void RegAlloc::Move(HostLoc to, HostLoc from) noexcept {
const size_t bit_width = LocInfo(from).GetMaxBitWidth();
ASSERT(LocInfo(to).IsEmpty() && !LocInfo(from).IsLocked());
ASSERT(bit_width <= HostLocBitWidth(to));
if (!LocInfo(from).IsEmpty()) {
EmitMove(bit_width, to, from);
LocInfo(to) = std::exchange(LocInfo(from), {});
}
}
void RegAlloc::CopyToScratch(size_t bit_width, HostLoc to, HostLoc from) noexcept {
ASSERT(LocInfo(to).IsEmpty() && !LocInfo(from).IsEmpty());
EmitMove(bit_width, to, from);
}
void RegAlloc::Exchange(HostLoc a, HostLoc b) noexcept {
ASSERT(!LocInfo(a).IsLocked() && !LocInfo(b).IsLocked());
ASSERT(LocInfo(a).GetMaxBitWidth() <= HostLocBitWidth(b));
ASSERT(LocInfo(b).GetMaxBitWidth() <= HostLocBitWidth(a));
if (LocInfo(a).IsEmpty()) {
Move(a, b);
} else if (LocInfo(b).IsEmpty()) {
Move(b, a);
} else {
EmitExchange(a, b);
std::swap(LocInfo(a), LocInfo(b));
}
}
void RegAlloc::MoveOutOfTheWay(HostLoc reg) noexcept {
ASSERT(!LocInfo(reg).IsLocked());
if (!LocInfo(reg).IsEmpty()) {
SpillRegister(reg);
}
}
void RegAlloc::SpillRegister(HostLoc loc) noexcept {
ASSERT_MSG(HostLocIsRegister(loc), "Only registers can be spilled");
ASSERT_MSG(!LocInfo(loc).IsEmpty(), "There is no need to spill unoccupied registers");
ASSERT_MSG(!LocInfo(loc).IsLocked(), "Registers that have been allocated must not be spilt");
const HostLoc new_loc = FindFreeSpill();
Move(new_loc, loc);
}
HostLoc RegAlloc::FindFreeSpill() const noexcept {
for (size_t i = static_cast<size_t>(HostLoc::FirstSpill); i < hostloc_info.size(); i++) {
const auto loc = static_cast<HostLoc>(i);
if (LocInfo(loc).IsEmpty()) {
return loc;
}
}
ASSERT_FALSE("All spill locations are full");
}
inline static Xbyak::RegExp SpillToOpArg_Helper1(HostLoc loc, size_t reserved_stack_space) noexcept {
ASSERT(HostLocIsSpill(loc));
size_t i = static_cast<size_t>(loc) - static_cast<size_t>(HostLoc::FirstSpill);
ASSERT_MSG(i < SpillCount, "Spill index greater than number of available spill locations");
return Xbyak::util::rsp + reserved_stack_space + ABI_SHADOW_SPACE + offsetof(StackLayout, spill) + i * sizeof(StackLayout::spill[0]);
}
void RegAlloc::EmitMove(const size_t bit_width, const HostLoc to, const HostLoc from) noexcept {
if (HostLocIsXMM(to) && HostLocIsXMM(from)) {
MAYBE_AVX(movaps, HostLocToXmm(to), HostLocToXmm(from));
} else if (HostLocIsGPR(to) && HostLocIsGPR(from)) {
ASSERT(bit_width != 128);
if (bit_width == 64) {
code->mov(HostLocToReg64(to), HostLocToReg64(from));
} else {
code->mov(HostLocToReg64(to).cvt32(), HostLocToReg64(from).cvt32());
}
} else if (HostLocIsXMM(to) && HostLocIsGPR(from)) {
ASSERT(bit_width != 128);
if (bit_width == 64) {
MAYBE_AVX(movq, HostLocToXmm(to), HostLocToReg64(from));
} else {
MAYBE_AVX(movd, HostLocToXmm(to), HostLocToReg64(from).cvt32());
}
} else if (HostLocIsGPR(to) && HostLocIsXMM(from)) {
ASSERT(bit_width != 128);
if (bit_width == 64) {
MAYBE_AVX(movq, HostLocToReg64(to), HostLocToXmm(from));
} else {
MAYBE_AVX(movd, HostLocToReg64(to).cvt32(), HostLocToXmm(from));
}
} else if (HostLocIsXMM(to) && HostLocIsSpill(from)) {
const Xbyak::Address spill_addr = SpillToOpArg(from);
ASSERT(spill_addr.getBit() >= bit_width);
switch (bit_width) {
case 128:
MAYBE_AVX(movaps, HostLocToXmm(to), spill_addr);
break;
case 64:
MAYBE_AVX(movsd, HostLocToXmm(to), spill_addr);
break;
case 32:
case 16:
case 8:
MAYBE_AVX(movss, HostLocToXmm(to), spill_addr);
break;
default:
UNREACHABLE();
}
} else if (HostLocIsSpill(to) && HostLocIsXMM(from)) {
const Xbyak::Address spill_addr = SpillToOpArg(to);
ASSERT(spill_addr.getBit() >= bit_width);
switch (bit_width) {
case 128:
MAYBE_AVX(movaps, spill_addr, HostLocToXmm(from));
break;
case 64:
MAYBE_AVX(movsd, spill_addr, HostLocToXmm(from));
break;
case 32:
case 16:
case 8:
MAYBE_AVX(movss, spill_addr, HostLocToXmm(from));
break;
default:
UNREACHABLE();
}
} else if (HostLocIsGPR(to) && HostLocIsSpill(from)) {
ASSERT(bit_width != 128);
if (bit_width == 64) {
code->mov(HostLocToReg64(to), Xbyak::util::qword[SpillToOpArg_Helper1(from, reserved_stack_space)]);
} else {
code->mov(HostLocToReg64(to).cvt32(), Xbyak::util::dword[SpillToOpArg_Helper1(from, reserved_stack_space)]);
}
} else if (HostLocIsSpill(to) && HostLocIsGPR(from)) {
ASSERT(bit_width != 128);
if (bit_width == 64) {
code->mov(Xbyak::util::qword[SpillToOpArg_Helper1(to, reserved_stack_space)], HostLocToReg64(from));
} else {
code->mov(Xbyak::util::dword[SpillToOpArg_Helper1(to, reserved_stack_space)], HostLocToReg64(from).cvt32());
}
} else {
ASSERT_FALSE("Invalid RegAlloc::EmitMove");
}
}
void RegAlloc::EmitExchange(const HostLoc a, const HostLoc b) noexcept {
if (HostLocIsGPR(a) && HostLocIsGPR(b)) {
code->xchg(HostLocToReg64(a), HostLocToReg64(b));
} else if (HostLocIsXMM(a) && HostLocIsXMM(b)) {
ASSERT_FALSE("Check your code: Exchanging XMM registers is unnecessary");
} else {
ASSERT_FALSE("Invalid RegAlloc::EmitExchange");
}
}
Xbyak::Address RegAlloc::SpillToOpArg(const HostLoc loc) noexcept {
return Xbyak::util::xword[SpillToOpArg_Helper1(loc, reserved_stack_space)];
}
} // namespace Dynarmic::Backend::X64