eden/tools/test/compare_logs.py
Caio Oliveira 7889814ce6
[test] r2
Signed-off-by: Caio Oliveira <caiooliveirafarias0@gmail.com>
2025-10-09 21:53:31 -03:00

155 lines
4.8 KiB
Python
Executable file

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright 2025 DraVee
# SPDX-License-Identifier: GPL-3.0-or-later
import sys
import pandas as pd
import matplotlib.pyplot as plt
import glob
import os
import re
# Check required Python modules
required_modules = ["pandas", "matplotlib"]
missing_modules = []
for mod in required_modules:
try:
__import__(mod)
except ImportError:
missing_modules.append(mod)
if missing_modules:
print(f"Error: Missing required Python modules: {', '.join(missing_modules)}")
print("Please install them, e.g.:")
print(f" python3 -m pip install {' '.join(missing_modules)}")
sys.exit(1)
# Get log folder from command-line argument
if len(sys.argv) < 2:
print("Usage: python3 compare_logs.py <log_folder>")
sys.exit(1)
log_base_folder = os.path.expanduser(sys.argv[1])
if not os.path.isdir(log_base_folder):
print(f"Error: '{log_base_folder}' is not a valid folder")
sys.exit(1)
# Find all CSV files recursively (ignore summary CSVs)
csv_files = sorted(glob.glob(os.path.join(log_base_folder, "**/eden_*.csv"), recursive=True))
csv_files = [f for f in csv_files if not f.endswith("_summary.csv")]
if not csv_files:
print(f"No CSV files found in {log_base_folder} or its subfolders")
sys.exit(0)
# Prepare plotting
plt.figure(figsize=(14, 7))
colors = plt.colormaps['tab10']
stats = []
for i, csv_file in enumerate(csv_files):
# Relative path from base folder
relative_path = os.path.relpath(csv_file, log_base_folder)
# Read eden-cli version if exists
log_dir = os.path.dirname(csv_file)
version_file = os.path.join(log_dir, "eden-cli-version.txt")
if os.path.exists(version_file):
with open(version_file, "r") as f:
eden_version = f.read().strip()
else:
eden_version = "unknown version"
# Corresponding summary file
summary_file = csv_file.replace(".csv", "_summary.csv")
# Skip empty CSVs
if os.path.getsize(csv_file) == 0:
print(f"Skipping {relative_path}: file is empty")
continue
# Read main CSV (skip system info lines)
df = pd.read_csv(csv_file, skiprows=2)
df.columns = df.columns.str.strip()
if 'fps' not in df.columns:
print(f"Skipping {relative_path}: no 'fps' column found")
continue
y = df['fps']
# --- FILTRAR OUTLIERS ---
mean_y = y.mean()
std_y = y.std()
y_filtered = y[(y >= mean_y - 3*std_y) & (y <= mean_y + 3*std_y)]
x_filtered = range(len(y_filtered))
# ------------------------
# Compute statistics from filtered data
mean_fps = y_filtered.mean()
min_fps = y_filtered.min()
max_fps = y_filtered.max()
# Read summary CSV if exists
summary_text = ""
if os.path.exists(summary_file):
try:
df_sum = pd.read_csv(summary_file)
avg = float(df_sum['Average FPS'][0])
p0_1 = float(df_sum['0.1% Min FPS'][0])
p1 = float(df_sum['1% Min FPS'][0])
p97 = float(df_sum['97% Percentile FPS'][0])
summary_text = f" | summary avg={avg:.1f}, 0.1%={p0_1:.1f}, 1%={p1:.1f}, 97%={p97:.1f}"
except Exception as e:
print(f"Could not read summary for {summary_file}: {e}")
# Store stats including version
stats.append((relative_path, mean_fps, min_fps, max_fps, summary_text, eden_version))
# Plot FPS line with filtered data
plt.plot(
x_filtered, y_filtered,
label=f"{relative_path} (avg={mean_fps:.1f}) [{eden_version}]{summary_text}",
color=colors(i % 10)
)
# Configure plot
plt.xlabel('Frame')
plt.ylabel('FPS')
plt.title('FPS Comparison Across All Builds (Outliers Removed)')
plt.legend()
plt.grid(True)
plt.tight_layout()
# Save plot
png_file = os.path.join(os.getcwd(), "fps_comparison_all_builds.png")
plt.savefig(png_file, dpi=200)
plt.show()
# Print concise statistics grouped by build folder
print("\nFPS Summary by build folder (concise):")
for name, mean_fps, min_fps, max_fps, summary_text, eden_version in stats:
log_folder = os.path.dirname(name) # pasta do CSV (_timestamp_)
build_folder = os.path.basename(os.path.dirname(log_folder)) # pasta do build*
version_short = eden_version.split()[0] if eden_version != "unknown version" else "unknown"
print(f"{build_folder} | {version_short} | mean={mean_fps:.1f}, min={min_fps:.1f}, max={max_fps:.1f}")
print("\n----------------------------")
print(f"Total CSV files processed: {len(stats)}")
# Track build folders (without timestamps)
build_folders = set()
for csv_file in csv_files:
run_folder = os.path.dirname(csv_file)
build_folder = os.path.dirname(run_folder)
build_folders.add(build_folder)
print("\nBuild folders containing CSVs:")
for folder in sorted(build_folders):
print(f" - {folder}")
print(f"Graph saved as: {png_file}")