#!/usr/bin/env python3 # SPDX-FileCopyrightText: Copyright 2025 DraVee # SPDX-License-Identifier: GPL-3.0-or-later import sys import pandas as pd import matplotlib.pyplot as plt import glob import os # Check required Python modules required_modules = ["pandas", "matplotlib"] missing_modules = [] for mod in required_modules: try: __import__(mod) except ImportError: missing_modules.append(mod) if missing_modules: print(f"Error: Missing required Python modules: {', '.join(missing_modules)}") print("Please install them, e.g.:") print(f" python3 -m pip install {' '.join(missing_modules)}") sys.exit(1) # Get log folder from command-line argument if len(sys.argv) < 2: print("Usage: python3 compare_logs.py ") sys.exit(1) log_base_folder = os.path.expanduser(sys.argv[1]) if not os.path.isdir(log_base_folder): print(f"Error: '{log_base_folder}' is not a valid folder") sys.exit(1) # Find all CSV files recursively (ignore summary CSVs) csv_files = sorted(glob.glob(os.path.join(log_base_folder, "**/eden_*.csv"), recursive=True)) csv_files = [f for f in csv_files if not f.endswith("_summary.csv")] if not csv_files: print(f"No CSV files found in {log_base_folder} or its subfolders") sys.exit(0) # Prepare plotting plt.figure(figsize=(14, 7)) colors = plt.colormaps['tab10'] stats = [] # Track which folders have CSVs folders_with_csv = set() for i, csv_file in enumerate(csv_files): folder = os.path.dirname(csv_file) folders_with_csv.add(folder) # Corresponding summary file summary_file = csv_file.replace(".csv", "_summary.csv") # Skip empty CSVs if os.path.getsize(csv_file) == 0: print(f"Skipping {csv_file}: file is empty") continue # Read main CSV (skip system info lines) df = pd.read_csv(csv_file, skiprows=2) df.columns = df.columns.str.strip() if 'fps' not in df.columns: print(f"Skipping {csv_file}: no 'fps' column found") continue y = df['fps'] x = range(len(y)) # Compute statistics from main CSV mean_fps = y.mean() min_fps = y.min() max_fps = y.max() # Read summary CSV if exists summary_text = "" if os.path.exists(summary_file): try: df_sum = pd.read_csv(summary_file) avg = float(df_sum['Average FPS'][0]) p0_1 = float(df_sum['0.1% Min FPS'][0]) p1 = float(df_sum['1% Min FPS'][0]) p97 = float(df_sum['97% Percentile FPS'][0]) summary_text = f" | summary avg={avg:.1f}, 0.1%={p0_1:.1f}, 1%={p1:.1f}, 97%={p97:.1f}" except Exception as e: print(f"Could not read summary for {summary_file}: {e}") stats.append((os.path.basename(csv_file), mean_fps, min_fps, max_fps, summary_text)) # Plot FPS line with summary info plt.plot(x, y, label=f"{os.path.basename(csv_file)} (avg={mean_fps:.1f}){summary_text}", color=colors(i % 10)) # Configure plot plt.xlabel('Frame') plt.ylabel('FPS') plt.title('FPS Comparison Across All Builds') plt.legend() plt.grid(True) plt.tight_layout() # Save plot png_file = os.path.join(os.getcwd(), "fps_comparison_all_builds.png") plt.savefig(png_file, dpi=200) plt.show() # Print statistics in terminal print("\nFPS Summary by file:") for name, mean_fps, min_fps, max_fps, summary_text in stats: print(f"{name}: mean={mean_fps:.1f}, min={min_fps:.1f}, max={max_fps:.1f}{summary_text}") print("\n----------------------------") print(f"Total CSV files processed: {len(stats)}") # Track build folders (without timestamps) build_folders = set() for csv_file in csv_files: run_folder = os.path.dirname(csv_file) build_folder = os.path.dirname(run_folder) build_folders.add(build_folder) print("\nBuild folders containing CSVs:") for folder in sorted(build_folders): print(f" - {folder}") print(f"Graph saved as: {png_file}")